Chomsky-Normalform

Die Chomsky-Normalform (Abk.: CNF) ist in der theoretischen Informatik eine Normalform für kontextfreie Grammatiken. Sie ist nach dem Linguisten Noam Chomsky benannt und kommt beim CYK-Algorithmus zum Einsatz. Eine kontextfreie Grammatik in Chomsky-Normalform hat eine einfache Struktur der Produktionsregeln und erfüllt auch die Eigenschaften kontextsensitiver Grammatiken.

Zu jeder kontextfreien Sprache gibt es eine Grammatik in Chomsky-Normalform. Deshalb kann aus jeder kontextfreien Grammatik eine Chomsky-Normalform konstruiert werden, die dieselbe Sprache erzeugt. Die Grammatik wird dann auch eine Chomsky-Normalform der kontextfreien Grammatik genannt.

Eine weitere Normalform für kontextfreie Grammatiken ist die Greibach-Normalform. Eine Erweiterung der Chomsky-Normalform auf kontextsensitive Grammatiken stellt die Kuroda-Normalform dar. Die Chomsky-Normalform wird auf Grund der gleichen Abkürzung leicht mit der Konjunktiven Normalform (engl. conjunctive normal form) verwechselt.

Definition

Eine formale Grammatik ist in Chomsky-Normalform, wenn jede Produktion aus eine der folgenden Formen hat:

wobei , und Nichtterminalsymbole aus sind und ein Terminalsymbol aus ist. ist das Startsymbol und das leere Wort. Wenn die Produktion zur Grammatik gehört, dann darf nicht auf der rechten Seite einer Produktion stehen.

Lässt man bei der ersten Produktion auf der rechten Seite beliebig viele anstatt zwei Nichtterminalsymbole zu, so spricht man von einer schwachen Chomsky-Normalform.

In anderen Sprachen