Projektivní geometrie

V projektivní rovině se libovolné dvě přímky protnou.

Projektivní geometrie představuje takovou geometrii, která zkoumá vlastnosti, které se nemění u projektivních transformací (kolineací). Model pro tuto geometrii je obvykle projektivní rovina anebo projektivní prostor. V této geometrii jsou definovány body a přímky, nikoli však úhly a vzdálenosti.

Projektivní geometrie byla historicky inspirována potřebami renesančního umění – zvládnutím perspektivy v malířství. Matematickým zachycením těchto poznatků se zabývali Desargues, Poncelet, Möbius, Cayley a jiní.

Důležitou vlastností projektivní geometrie je tzv. "dualita". Například v geomerii projektivní roviny vyjadřuje fakt, že když se v jejích tvrzeních zamění slova bod a přímka a spojení "ležet na přímce" za "protínat se v bodě", tak se zachová pravdivost. Např. výrok "Každé dva různé body leží na jediné přímce" je duální k výroku "Každé dvě různé přímky se protínají v jediném bodě", oba jsou pravdivé.

Historie

První geometrické vlastnosti projektivního charakteru byly objeveny ve třetím století Pappem z Alexandrie.[1] Johannes Kepler (15711630) a Girard Desargues (15911661) nezávisle na sobě rozvinuli základní koncept "bodů v nekonečnu". Desargues se snažil propojit tyto myšlenky s Euklidovou geometrií do jednoho systému. Další významní myslitelé, kteří přispěli k vývoji projektivní geometrie, byli Gaspard Monge a Jean-Victor Poncelet, který roku 1822 publikoval jedno ze základních historických pojednání o projektivní geometrii, ve kterém charakterizoval vztahy mezi metrickými a projektivními vlastnosti geometrických objektů.

Pozdější práce Ponceleta, Jakoba Steinera a jiných směřovaly k axiomatickému zavedení projektivních prostorů.

Jiné Jazyky