পিথাগোরাসের উপপাদ্য

গণিতবিদ্যায় পিথাগোরাসের উপপাদ্য বা পিথাগোরিয়ান থিউরেম হল ইউক্লিডীয় জ্যামিতির অন্তর্ভুক্ত সমকোণী ত্রিভুজের তিনটি বাহু সম্পর্কিত একটি সম্পর্ক। এই উপপাদ্যটি গ্রিক গণিতবিদ পিথাগোরাসএর নামানুসারে করা হয়েছে, যাকে ঐতিহ্যগতভাবে এই উপপাদ্যদের আবিষ্কারক ও প্রমাণকারী হিসেবে গণ্য করা হয়। তবে উপপাদ্যটির ধারণা তার সময়ের আগে থেকেই প্রচলিত ছিল। চীনে এই উপপাদ্যটি “গোউযু থিউরেম” (勾股定理) হিসেবে প্রচলিত যা ৩, ৪ ও পাঁচ বাহু বিশিষ্ট ত্রিভুজের ক্ষেত্রে প্রযোজ্য।[১][২]এই উপপাদ্যমতে, কোন একটি সমকোণী ত্রিভুজের অতিভুজের উপর অঙ্কিত বর্গক্ষেত্রের ক্ষেত্রফল ঐ ত্রিভুজের অপর দুই বাহুর উপর অঙ্কিত বর্গক্ষেত্রদ্বয়ের ক্ষেত্রফলের সমষ্টির সমান।যদি আমরা c কে অতিভুজ এবং ab কে অপর দুই বাহুর দৈর্ঘ্য ধরি, তাহলে সমীকরণের সাহায্যে উপপাদ্যটি হবে[৩][৪]

বা, c এর মান নির্ণয়ের ক্ষেত্রে:

এই সূত্রে সমবাহু ত্রিভুজের একটি বৈশিষ্ট্য সাধারণ সূত্রের সাহায্যে প্রকাশ করা হয় যার মাধ্যমে কোন ত্রিভুজের দুটি বাহুর দৈর্ঘ্য জানা থাকলে তৃতীয় বাহুর দৈর্ঘ্য নির্ণয় করা যায়। এই সূত্রের একটি সাধারণকৃত রূপ হল ল অফ কজিনস যার সাহায্যে যে কোন ত্রিভুজের তৃতীয় বাহুর দৈর্ঘ্য নির্ণয় করা যায় যখন বাকী দুটি বাহুর দৈর্ঘ্য এবং তাদের মধ্যকার কোণের মান দেয়া থাকে। যদি বাহু দুটির মধ্যকার কোণটি সমকোণ হয় তবে পিথাগোরাস উপপাদ্যের সাহায্যে তা নির্ণয় সম্ভব।[৫]

পিথাগোরাসের উপপাদ্য

সদৃশ ত্রিভুজ ব্যবহার করে প্রমাণ

এ প্রমাণটি অনুপাতের উপর ভিত্তি করে প্রতিষ্ঠিত যাতে দুটি সদৃশ ত্রিভুজকে ব্যবহার করা হয়েছে।

ধরা যাক ABC একটি সমকোণী ত্রিভুজ , যার সমকোণটি হল C, চিত্রে প্রদর্শিত হয়েছে। C বিন্দু অঙ্কিত লম্ব H বাহু, AB কে ছেদ করে। ফলে সৃষ্ট নতুন ত্রিভুজ ACH , পূর্বোক্ত ABC এর সদৃশ হবে, কেননা এদের উভয়ের একটি কোণ সমকোণ ও একটি কোণ A সাধারণ। ফলে তৃতীয় কোণটিও সমান হবে এবং একই কারণে CBH ত্রিভুজটিও ABC এর সদৃশ। এই সদৃশতার দরুন দুটি অনুপাত...

হবে

তাই

এগুলো নিম্নোক্ত উপায়ে লেখা যায়

দুটি সমতাকে যোগ করে, পাওয়া যায়

এটিই হল, পিথাগোরাসের উপপাদ্য:

বীজগাণিতিক প্রমাণ

বীজগাণিতিক উপায়ে নিম্নভাবে সূত্রটির প্রমাণ করা যায়। পাশের চিত্রটির বৃহত বর্গটির চার কোণে চারটি সমকোণী ত্রিভুজ আছে যাদের প্রত্যেকের ক্ষেত্রফল

A square created by aligning four right angle triangles and a large square.

ত্রিভুজগুলোর A-পার্শস্থ ও B পার্শ্বস্থ কোণগুলো পরষ্পরের পরিপূরক, সুতরাং মধ্যবর্তী নীল এলাকার প্রতিটি কোণ একটি সমকোণ। অর্থাত মাঝের নীল এলাকাটি একটি বর্গ যার প্রতিটি বাহুর দৈর্ঘ্য C। বর্গটির ক্ষেত্রফল C2। ফলে সম্পূর্ণ এলাকাটির ক্ষেত্রফল:

এদিকে বৃহত বর্গটির একটি বাহুর দৈর্ঘ্য A + B। এর ক্ষেত্রফল (A + B)2 যা বর্ধিত করলে দাঁড়ায়A2 + 2AB + B2.

(Distribution of the 4)
(2AB বিয়োগ করে)
  • তথ্যসূত্র

তথ্যসূত্র

  1. Judith D. Sally; Paul Sally (২০০৭)। "Chapter 3: Pythagorean triples"। Roots to research: a vertical development of mathematical problems। American Mathematical Society Bookstore। পৃষ্ঠা 63। আইএসবিএন 0-8218-4403-2 
  2. O'Connor, J J; Robertson, E F (ডিসেম্বর ২০০০)। "Pythagoras's theorem in Babylonian mathematics"School of Mathematics and Statistics। University of St. Andrews, Scotland। সংগ্রহের তারিখ ২৫ জানুয়ারি ২০১৭In this article we examine four Babylonian tablets which all have some connection with Pythagoras's theorem. Certainly the Babylonians were familiar with Pythagoras's theorem. 
  3. George Johnston Allman (১৮৮৯)। Greek Geometry from Thales to Euclid (Reprinted by Kessinger Publishing LLC 2005 সংস্করণ)। Hodges, Figgis, & Co। পৃষ্ঠা 26। আইএসবিএন 1-4326-0662-XThe discovery of the law of three squares, commonly called the "theorem of Pythagoras" is attributed to him by – amongst others – Vitruvius, Diogenes Laertius, Proclus, and Plutarch ... 
  4. (Heath 1921, Vol I, p. 144)
  5. Mario Livio (২০০৩)। The golden ratio: the story of phi, the world's most astonishing number। Random House, Inc। পৃষ্ঠা 25। আইএসবিএন 0-7679-0816-3 
Other Languages
Alemannisch: Satz des Pythagoras
azərbaycanca: Pifaqor nəzəriyyəsi
žemaitėška: Pėtaguora teuorema
беларуская: Тэарэма Піфагора
беларуская (тарашкевіца)‎: Тэарэма Пітагора
emiliàn e rumagnòl: Tioréma 'd Pitàgora
hornjoserbsce: Sada Pythagorasa
Bahasa Indonesia: Teorema Pythagoras
Lingua Franca Nova: Teorem de Pitagora
lietuvių: Pitagoro teorema
Bahasa Melayu: Teorem Pythagoras
davvisámegiella: Pythagorasa cealkka
srpskohrvatski / српскохрватски: Pitagorina teorema
Simple English: Pythagorean theorem
slovenčina: Pytagorova veta
slovenščina: Pitagorov izrek
Türkçe: Pisagor teoremi
татарча/tatarça: Pifagor teoreması
українська: Теорема Піфагора
oʻzbekcha/ўзбекча: Pifagor teoremasi
vepsän kel’: Pifagoran teorem
Tiếng Việt: Định lý Pythagoras
吴语: 勾股定理
中文: 勾股定理
文言: 勾股定理
Bân-lâm-gú: Pythagoras tēng-lí
粵語: 勾股定理