Хилбертово пространство

Положението на вибрираща струна може да бъде моделирана като точка в Хилбертово пространство. Разлагането на вибриращата струна в отделни обертонове е дадено от проекцията на точката върху координатни оси в пространството.

Хилбертово пространство (ХП) е понятие в математиката обобщаващо Евклидовото пространство. Наречено е на Давид Хилберт, който пръв въвежда концепцията за безкрайномерно Евклидово пространство през 1909 г.

Хилбертовото пространство разширява методите на векторната алгебра от двумерната равнина и тримерното пространство към многомерните пространства.

Ако трябва да го дефинираме с по-строги математически термини, Хилбертовото пространство е векторно пространство, в което разстоянията и ъглите могат да бъдат измерени и, което е пълно. Тоест за всяка редица от вектори на Коши съществува граница в пространството.

В общия случай ХП е безкрайномерно, линейно и векторно пространство над комплексните числа със скаларно произведение, относно което то е пълно.

Пространствата на Хилберт се използват широко в математиката и физиката. Те са изключително важен инструмент в теорията на частните диференциални уравнения, квантовата механика и обработката на сигнали. Благодарение на тази теория бяха достигнати много успехи в областта на функционалния анализ.

Геометрическата интуиция играе важна роля в много от насоките на Хилбертовото пространство. Елемент от Хилбертово пространство може да бъде еднозначно зададен посредством координатите спрямо ортонормирана координатна система, по аналогия с декартовите координати в равнината. Когато базовата координатна система е безкрайна, това означава че Хилбертовото пространство е безкрайна последователност от квадратни суми. Линейните оператори в Хилбертово пространство са съвсем конкретни обекти. В най-добрите случаи те са трансформации, които разширяват пространството с даден фактор във взаимно перпендикулярни посоки.

Дефиниция и примери

Пространство на Хилберт е реално или комплексно векторно пространство, което е пълно и в което модула се определя от скаларното произведение посредством формулата:

.

други езици
Afrikaans: Hilbert-ruimte
العربية: فضاء هيلبرت
azərbaycanca: Hilbert fəzası
dansk: Hilbertrum
Deutsch: Hilbertraum
Ελληνικά: Χώρος Χίλμπερτ
English: Hilbert space
Esperanto: Hilberta spaco
magyar: Hilbert-tér
lietuvių: Hilberto erdvė
Nederlands: Hilbertruimte
norsk nynorsk: Hilbertrom
norsk: Hilbertrom
پنجابی: ہلبرٹ سپیس
português: Espaço de Hilbert
română: Spațiu Hilbert
srpskohrvatski / српскохрватски: Hilbertov prostor
Simple English: Hilbert space
slovenčina: Hilbertov priestor
slovenščina: Hilbertov prostor
српски / srpski: Хилбертов простор
svenska: Hilbertrum
Türkçe: Hilbert uzayı
oʻzbekcha/ўзбекча: Gilbert fazosi
Tiếng Việt: Không gian Hilbert
粵語: 囂拔空間