Канечнае поле

Кане́чнае по́ле ці по́ле Галуа́поле, якое складаецца з канечнай колькасці элементаў. Другую назву канечныя палі атрымалі ў гонар французскага матэматыка Эварыста Галуа.

Канечнае поле звычайна абазначаецца ці GF(q) (скарачэнне ад Galois field), дзе q — колькасць элементаў поля (магутнасць). З дакладнасцю да ізамарфізму канечнае поле поўнасцю вызначаецца яго магутнасцю, якая заўсёды з'яўляецца ступенню нейкага простага ліку (q = pn, дзе p — просты лік, які з'яўляецца характарыстыкаю поля).

Паняцце канечнага поля выкарыстоўваецца, сярод іншага, у тэорыі лікаў, алгебраічнай геаметрыі, тэорыі Галуа, крыптаграфыі, у распрацоўцы сакрэтных ключоў розных шыфраў (напрыклад, AES).

Найпрасцейшым прыкладам канечнага поля з'яўляецца — колца вылікаў па модулю простага ліку .

Гісторыя вывучэння

Першыя ўпамінанні пра нешта, блізкае да тэорыі канечных палёў, можна знайсці яшчэ ў XVII стагоддзі. Над гэтаю тэмай працавалі такія навукоўцы, як П'ер Ферма, Леанард Эйлер, Жазеф Луі Лагранж і Адрыен Мары Лежандр, якіх можна лічыць заснавальнікамі тэорыі простых канечных палёў. Аднак большую цікавасць прадстаўляе агульная тэорыя канечных палёў, якая бярэ пачатак з прац Гауса і Галуа. У гонар апошняга канечныя палі і атрымалі сваю другую назву — палі Галуа. Да некаторага часу гэтая тэорыя прымянялася толькі ў алгебры і тэорыі лікаў, аднак у другой палавіне XX стагоддзя выявіліся новыя вобласці дотыку з тэорыяй палёў(руск.)  бел., тэорыяй груп, алгебраічнаю геаметрыяй, камбінаторыкаю і тэорыяй кадзіравання[1].

Уклад Галуа

Эварыст Галуа

У 1830 годзе Эварыст Галуа апублікаваў працу[2], якая стала асноваю агульнай тэорыі канечных палёў. Зыходнаю мэтаю Галуа было вывучэнне параўнання

якое з'яўляецца абагульненнем квадратычных параўнанняў, даследаваных Гаусам (гл. квадратычны закон узаемнасці). Тут — адвольны непрыводны мнагачлен ступені n. У гэтай рабоце Галуа ўводзіць уяўны корань параўнання і абазначае яго . Пасля гэтага разглядаецца агульны выраз

дзе — нейкія цэлыя лікі па модулю p. Калі прысвойваць гэтым лікам усе магчымыя значэнні, выраз будзе прымаць значэнняў. Далей Галуа паказвае, што гэтыя значэнні ўтвараюць поле магутнасці і яго мультыплікатыўная група з'яўляецца цыклічнаю[3]. Такім чынам, гэтая праца стала першым каменем у падмурку агульнай тэорыі канечных палёў. У адрозненне ад яго папярэднікаў, якія разглядалі толькі палі Галуа разглядае ўжо палі якія пачалі называць палямі Галуа ў яго гонар.

На самай справе, Гаус пачаў працаваць у гэтым напрамку прыкладна на 30 гадоў раней, але пры яго жыцці гэтыя даследаванні так і не былі выдадзены. Верагодна, гэтае даследаванне было праігнаравана рэдактарам яго твораў[4], таму ў свет гэтая праца выйшла толькі ў пасмяротным выданні ў 1863.

Далейшае развіццё

У 1893 годзе матэматык Эліякім Мур(руск.)  бел. даказаў тэарэму аб класіфікацыі канечных палёў[5], якая сцвярджае, што любое канечнае поле з'яўляецца полем Галуа.

Да гэтага ж года адносіцца першая спроба аксіяматычнага падыходу да тэорыі канечных палёў, ажыццёўленая Генрыхам Веберам(руск.)  бел., які спрабаваў аб'яднаць у сваёй працы[6] паняцці, якія ўзніклі ў розных раздзелах матэматыкі, у тым ліку і паняцце канечнага поля.

Далей у 1905 годзе Джозэф Ведэрбёрн(англ.)  бел. даказвае тэарэму(англ.)  бел. аб тым, што любое канечнае цела камутатыўнае, г.зн. з'яўляецца полем.

Сучаснае аксіяматычнае азначэнне поля (з канечнымі палямі ў якасці асобнага выпадку) належыць Эрнсту Штайніцу(руск.)  бел. і выкладзена ў яго працы 1910 года[7].

Далейшае развіццё тэорыі адбываецца ў тэарэтычных і прыкладных галінах, якія выкарыстоўваюць канечныя палі ў той ці іншай ролі.

іншыя мовы
العربية: حقل منته
български: Крайно поле
català: Cos finit
English: Finite field
español: Cuerpo finito
français: Corps fini
עברית: שדה סופי
italiano: Campo finito
日本語: 有限体
한국어: 유한체
português: Corpo finito
română: Corp finit
Simple English: Galois field
српски / srpski: Коначно поље
svenska: Ändlig kropp
Türkçe: Sonlu alan
українська: Поле Галуа
中文: 有限域
粵語: 有限體