تدور

مواضيع في الحسبان
المبرهنة الأساسية
نهايات الدوال
استمرارية
مبرهنة القيمة المتوسطة

التدور ( بالإنجليزية: Curl) ورمزه : مؤثر تفاضلي يصف دورانية حقل متجهي ثلاثي الأبعاد. علما أن تدور متجه ما هو كذلك متجه تعبر خصائصه عن مدى دوران الحقل عند أي نقطة ويعد جيمس كلارك ماكسويل أول من قدم فكرة تدور المتجهات. ويجوز أن يعبر عن التدور برموز مختلفة لكن أكثرها شيوعا هو ما ذكر آنفا ومن رموزه أو أو أو أو
. في حال كان تدور الحقل المتجهي صفرا فإن الحقل المتجهي حينها يعد حقلا متجهيا لادورانيا والحقل اللادوراني هو بالضرورة حقل محافظ (أو احتفاظي) (على سبيل المثال المجال الكهربائي الساكن) كما يدعى كذلك مجال متجهي ملفي وأيضا مجال متجهي لابلاسي لإنه يحقق معادلة لابلاس.

علما أن تباعد أي تدور لأي مجال متجهي يساوي صفر.

التعريف الرياضي

يعرف تدور المتجه عموما بإنه

أما في الإحداثيات الديكارتية ثلاثية الأبعاد فيعرض بالصيغة التالية.

حيث ترمز i, j, و k إلى متجه الوحدة لمحاور x, y و z, على التعاقب. ويمكن تفكيها إلى: [1]

En otros idiomas
català: Rotacional
español: Rotacional
français: Rotationnel
עברית: רוטור
हिन्दी: कर्ल (गणित)
hrvatski: Rotacija polja
magyar: Rotáció
íslenska: Rót (virki)
ქართული: როტორი
한국어: 회전 (벡터)
norsk: Curl
polski: Rotacja
português: Rotacional
română: Rotor
srpskohrvatski / српскохрватски: Rotor (matematika)
slovenščina: Rotor
Türkçe: Rotasyonel
татарча/tatarça: Ротор (математика)
українська: Ротор (математика)
Tiếng Việt: Rot (toán tử)
中文: 旋度