Vector

Representación gráfica de un vector como un segmento orientado sobre una recta.

En física, un vector (también llamado vector euclidiano o vector geométrico) es una magnitud física definida en un sistema de referencia que se caracteriza por tener módulo (o longitud) y una dirección (u orientación).[3]

En matemáticas se define un vector como un elemento de un espacio vectorial. Esta noción es más abstracta y para muchos espacios vectoriales no es posible representar sus vectores mediante el módulo y la dirección. En particular los espacios de dimensión infinita sin producto escalar no son representables de ese modo. Los vectores en un espacio euclídeo se pueden representar geométricamente como segmentos de recta dirigidos («flechas») en el plano o en el espacio .

Algunos ejemplos de magnitudes físicas que son magnitudes vectoriales: la velocidad con que se desplaza un móvil, ya que no queda definida tan solo por su módulo que es lo que marca el velocímetro, en el caso de un automóvil, sino que se requiere indicar la dirección (hacia donde se dirige); la fuerza que actúa sobre un objeto, ya que su efecto depende además de su magnitud o módulo, de la dirección en la que actúa; también, el desplazamiento de un objeto, pues es necesario definir el punto inicial y final del movimiento.

Esquema de un vector como un segmento de recta entre dos puntos A y B

Conceptos fundamentales

Esta sección explica los aspectos básicos, la necesidad de los vectores para representar ciertas magnitudes físicas, las componentes de un vector, la notación de los mismos, etc.

Definición

Componentes de un vector.

Se llama vector de dimensión a una tupla de números reales (que se llaman componentes del vector). El conjunto de todos los vectores de dimensión se representa como (formado mediante el producto cartesiano).

Así, un vector perteneciente a un espacio se representa como:

( left), donde

Un vector también se puede ver desde el punto de vista de la geometría como vector geométrico (usando frecuentemente el espacio tridimensional ó bidimensional ).

Un vector fijo del plano euclídeo es un segmento orientado, en el que hay que distinguir tres características:[3]

  • módulo: la longitud del segmento
  • dirección: la orientación de la recta
  • sentido: indica cual es el origen y cual es el extremo final de la recta

En inglés, la palabra "direction" indica tanto la dirección como el sentido del vector, con lo que se define el vector con solo dos características: módulo y dirección.[4]

Los vectores fijos del plano se denotan con dos letras mayúsculas, por ejemplo , que indican su origen y extremo respectivamente.

Características de un vector

Un vector se puede definir por sus coordenadas, si el vector esta en el plano xy, se representa:

siendo sus coordenadas:

Si consideramos el triángulo formado por las componentes (como catetos) y (como hipotenusa): se puede calcular multiplicando por el cosα (siendo α el ángulo formado por y ) o multiplicando por el senβ (siendo β el ángulo formado por y ). De igual forma se puede calcular multiplicando por el senα o multiplicando por el cosβ (considerando las posiciones de α y β mencionadas anteriormente).

Siendo el vector la suma vectorial de sus coordenadas:


Coordenadas tridimensionales.

Si un vector es de tres dimensiones reales, representado sobre los ejes x, y, z, se puede representar:

siendo sus coordenadas:


Si representamos el vector gráficamente podemos diferenciar la recta soporte o dirección, sobre la que se traza el vector.

Vector 02.svg


El módulo o amplitud con una longitud proporcional al valor del vector.

Vector 03.svg


El sentido, indicado por la punta de flecha, siendo uno de los dos posibles sobre la recta soporte.

Vector 04.svg


El punto de aplicación que corresponde al lugar geométrico al cual corresponde la característica vectorial representado por el vector.

Vector 05.svg


El nombre o denominación es la letra, signo o secuencia de signos que define al vector.

Vector 06.svg


Por lo tanto en un vector podemos diferenciar:

Vector 07.svg
Nombre
Dirección
Sentido
Módulo
Punto de aplicación


Magnitudes vectoriales

Representación gráfica de una magnitud vectorial, con indicación de su punto de aplicación y de los versores cartesianos.
Representación de los vectores.

Frente a aquellas magnitudes físicas, tales como la masa, la presión, el volumen, la energía, la temperatura, etc; que quedan completamente definidas por un número y las unidades utilizadas en su medida, aparecen otras, tales como el desplazamiento, la velocidad, la aceleración, la fuerza, el campo eléctrico, etc., que no quedan completamente definidas dando un dato numérico, sino que llevan asociadas una dirección. Estas últimas magnitudes son llamadas vectoriales en contraposición a las primeras llamadas escalares.

Las magnitudes vectoriales quedan representadas por un ente matemático que recibe el nombre de vector. En un espacio euclidiano, de no más de tres dimensiones, un vector se representa por un segmento orientado. Así, un vector queda caracterizado por los siguientes elementos: su longitud o módulo, siempre positivo por definición, y su dirección, la cual puede ser representada mediante la suma de sus componentes vectoriales ortogonales, paralelas a los ejes de coordenadas; o mediante coordenadas polares, que determinan el ángulo que forma el vector con los ejes positivos de coordenadas.[6]

Se representa como un segmento orientado, con una dirección, dibujado de forma similar a una "flecha". Su longitud representa el módulo del vector, la recta indica la dirección, y la "punta de flecha" indica su sentido.[3]

Notación

Las magnitudes vectoriales se representan en los textos impresos por letras en negrita, para diferenciarlas de las magnitudes escalares que se representan en cursiva. En los textos manuscritos, las magnitudes vectoriales se representan colocando una flecha sobre la letra que designa su módulo (el cual es un escalar).

Ejemplos
  • ... representan, respectivamente, las magnitudes vectoriales de módulos A, a, ω, ... El módulo de una magnitud vectorial también se representa encerrando entre barras la notación correspondiente al vector: ...
  • En los textos manuscritos se escribe: ... para los vectores y ... o ... para los módulos.

Cuando convenga, se representan la magnitud vectorial haciendo referencia al origen y al extremo del segmento orientado que la representa geométricamente; así, se designan los vectores representados en la Figura 2 en la forma , ... resultando muy útil esta notación para los vectores que representan el desplazamiento.

Además de estas convenciones los vectores unitarios o versores, cuyo módulo es la unidad, se representan frecuentemente con un circunflejo encima, por ejemplo .

Clasificación de vectores

Según los criterios que se utilicen para determinar la igualdad o equipolencia de dos vectores, pueden distinguirse distintos tipos de los mismos:

  • Vectores libres: no están aplicados en ningún punto en particular.
  • Vectores deslizantes: su punto de aplicación puede deslizar a lo largo de su recta de acción.
  • Vectores fijos o ligados: están aplicados en un punto en particular.

Podemos referirnos también a:

  • Vectores unitarios: vectores de módulo unidad.
  • Vectores concurrentes o angulares: son aquellas cuyas direcciones o líneas de acción pasan por un mismo punto. También se les suele llamar angulares porque forman un ángulo entre ellas.
  • Vectores opuestos: vectores de igual magnitud y dirección, pero sentidos contrarios.[1] En inglés se dice que son de igual magnitud pero direcciones contrarias, ya que la dirección también indica el sentido.
  • Vectores colineales: los vectores que comparten una misma recta de acción.
  • Vectores paralelos: si sobre un cuerpo rígido actúan dos o más fuerzas cuyas líneas de acción son paralelas.
  • Vectores coplanarios: los vectores cuyas rectas de acción son coplanarias (situadas en un mismo plano).

Componentes de un vector

Componentes del vector.

Un vector en el espacio euclídeo tridimensional se puede expresar como una combinación lineal de tres vectores unitarios o versores, que son perpendiculares entre sí y constituyen una base vectorial.

En coordenadas cartesianas, los vectores unitarios se representan por , , , paralelos a los ejes de coordenadas , , positivos. Las componentes del vector en una base vectorial predeterminada pueden escribirse entre paréntesis y separadas con comas:

o expresarse como una combinación de los vectores unitarios definidos en la base vectorial. Así, en un sistema de coordenadas cartesiano, será

Estas representaciones son equivalentes entre sí, y los valores , , , son las componentes de un vector que, salvo que se indique lo contrario, son números reales.

Una representación conveniente de las magnitudes vectoriales es mediante un vector columna o un vector fila, particularmente cuando están implicadas operaciones matrices (tales como el cambio de base), del modo siguiente:

Con esta notación, los vectores cartesianos quedan expresados de la siguiente manera:

El lema de Zorn, consecuencia del axioma de elección, permite establecer que todo espacio vectorial admite una base vectorial, por lo que todo vector es representable como el producto de unas componentes respecto a dicha base. Dado un vector solo existen un número finito de componentes diferentes de cero.

Representación gráfica de los vectores

Aunque hay quien no recomienda el uso de gráficos para evitar la confusión de conceptos y la inducción al error, sin investigación que lo corrobore, también es cierto que la memoria se estimula con mejores resultados. Para ello:

  • Se llama vector a la representación visual con el símbolo de flecha( un segmento y un triángulo en un extremo).
  • La rectitud visual de una flecha o curvatura de la misma, no la hace diferente en símbolo si los dos extremos permanecen en el mismo lugar y orden.
  • El que una flecha cierre en sí misma, indica la ausencia de efectos algebraicos.
  • Para visualizar la suma de vectores se hará encadenándolos, es decir, uniendo el extremo que tiene un triángulo (final) del primer vector con el extremo que no lo tiene (origen) del segundo vector manteniendo la dirección y distancia, propias al espacio, de sus dos extremos, ya que estas dos cualidades los distingue visualmente de otros vectores.
  • Los escalares se representarán con una línea de trazos a modo, exclusivamente, de distinción ya que no siempre pertenecen al espacio de vectores.

Se examinan cada uno de los casos que aparecen en la definición de las operaciones suma de vectores y producto por un escalar:

Suma de vectores

La definición suma de vectores en el orden u+v produce otro vector, es como encadenar, siempre visualmente, un vector u y luego uno v. Diremos que u+v se simplifica como un vector w o que w descompone como suma de vectores u y v.

Vetorial space P.GIF
1) Decir que u+v=v+u, es exigir que las dos sumas simplifiquen en el mismo vector, en negro. Véase que en física los vectores en rojo simulan la descomposición de fuerzas ejercidas por el vector negro en su origen, y se representa con un paralelogramo.
Vectorial space P 1.GIF
2) Decir que u+(v+w)=(u+v)+w, es exigir que las simplificaciones de sumas de vectores puedan ser optativas en cualquier cadena de sumas.
Vectorial space P 2.GIF
3) Decir que existe un vector cero ( elemento neutro) tal que u+0=u, equivale a exigir que exista un vector incapaz de efectuar, mediante la suma, modificación alguna a todos los vectores.
Vectorial space P 3.GIF
4) Decir que u+(-u)=0, es exigir la existencia de un elemento opuesto, -u, que sumado a u simplifique en un vector cero.
Vectorial space P 4.GIF

Producto por un escalar

La definición producto por un escalar produce otro vector; es como modificar el extremo final del vector u, siempre visualmente.

Por un lado la representación del producto en el caso que el cuerpo de los escalares sea modifica, visualmente, la longitud de la imagen del vector, quedando ambos siempre superpuestos; por otro lado las representaciones en el caso que además de modificar la longitud, también agrega rotaciones, para facilitarlas visualmente considérense centradas en el origen del vector, siendo estas modificaciones un poco más expresivas, visualmente, pero no más fáciles que en el caso real:

Vectorial space P e.GIF
a)Decir que a(bu)=(ab)u, es exigir que los productos encadenados a(b(u)) pueden simplificarse como uno, c=ab, luego (ab)u queda como cu.
Vectorial space P a.GIF
b) Decir que existe el escalar 1 tal que 1u=u, equivale a decir exista un escalar incapaz de efectuar, mediante producto, modificación alguna a todos los vectores.
Vectorial space P b.GIF
c) Decir que a(u+v)=au+av, es exigir la propiedad distributiva respecto la suma vectorial.
Vectorial space P c.GIF
d) Decir que (a+b)u=au+bu, es exigir la propiedad distributiva respecto la suma escalar.
Vectorial space P d.GIF

Para el caso real se han de eliminar las rotaciones de los ejemplos anteriores.

Other Languages
Afrikaans: Vektor
Alemannisch: Vektor
አማርኛ: ጨረር
العربية: متجهة
azərbaycanca: Vektor
беларуская (тарашкевіца)‎: Вэктар
български: Вектор
বাংলা: সদিক রাশি
bosanski: Euklidov vektor
Mìng-dĕ̤ng-ngṳ̄: Hióng-liông
čeština: Vektor
Deutsch: Vektor
Esperanto: Vektoro
eesti: Vektor
suomi: Vektori
Nordfriisk: Vektor
Gaeilge: Veicteoir
Gàidhlig: Bheactor
galego: Vector
हिन्दी: सदिश राशि
hrvatski: Vektor
Kreyòl ayisyen: Vektè
magyar: Vektor
Bahasa Indonesia: Vektor (spasial)
Ido: Vektoro
ქართული: ვექტორი
қазақша: Вектор
한국어: 벡터 (물리)
lietuvių: Vektorius
latviešu: Vektors
олык марий: Вектор
македонски: Вектор
Bahasa Melayu: Vektor
Plattdüütsch: Vekter
Nederlands: Vector (wiskunde)
norsk nynorsk: Vektor
norsk bokmål: Vektor (matematikk)
polski: Wektor
Piemontèis: Vetor
sicilianu: Vettura euclideu
srpskohrvatski / српскохрватски: Vektor
Simple English: Vector
slovenčina: Vektor (matematika)
slovenščina: Vektor (matematika)
shqip: Vektori
српски / srpski: Вектор
Basa Sunda: Véktor (rohangan)
svenska: Vektor
ślůnski: Wektůr
தமிழ்: திசையன்
Türkmençe: Wektor ululyklar
Türkçe: Vektör
oʻzbekcha/ўзбекча: Vektor (matematika)
Tiếng Việt: Vectơ
ייִדיש: וועקטאר
中文: 向量
Bân-lâm-gú: Hiòng-liōng
粵語: 向量