Variedad de Calabi-Yau

Sección bidimensional proyectada en 3D de una variedad de Calabi-Yau de dimensión 6 embebida en CP4.
Una sección bidimensional de una variendad quíntica de Calabi-Yau de seis dimensiones.

En matemáticas, una variedad de Calabi-Yau es una variedad de Kähler compacta con una primera clase de Chern nula.

El matemático Eugenio Calabi conjeturó en 1957 que tales variedades admiten una métrica con curvatura de Ricci nula (una en cada clase de Kähler), es decir, una variedad "plana". Esta conjetura fue probada por Shing-Tung Yau en 1977 y devino el teorema de Yau. Por lo tanto, una variedad de Calabi-Yau se puede también definir como variedad Ricci-plana compacta de Kähler.

También es posible definir una variedad de Calabi-Yau como variedad con una holonomía SU(n). Otra condición equivalente es que la variedad admite una (n, 0)-forma holomórfica global nunca nula.

Ejemplos

En una dimensión compleja, los únicos ejemplos son familia de toros. Obsérvese que la métrica Ricci-plana en el toro es realmente una métrica plana, de modo que la holonomía es el grupo trivial que es isomorfo a SU(1).

En dos dimensiones complejas, el toro T4 y las variedades K3 proveen los únicos ejemplos. T4 se excluye a veces de la clasificación de ser un Calabi-Yau, pues su holonomía (otra vez el grupo trivial) es un subgrupo propio de SU(2), en vez de ser isomorfo a SU(2). Por otra parte, el grupo holonomía de K3 es el SU(2) pleno, así que puede llamarse correctamente un Calabi-Yau en 2 dimensiones.

En tres dimensiones complejas, la clasificación de los Calabi-Yau posibles es un problema abierto. Un ejemplo de Calabi-Yau tridimensional es el quíntico en CP4.

Other Languages