Variedad (matemáticas)

En una esfera, la suma de los ángulos de un triángulo no es igual a 180°, pues la superficie de una esfera no es un espacio euclídeo. Sin embargo, localmente, las leyes de la geometría euclídea son buenas aproximaciones. Este ejemplo ilustra cómo la esfera puede ser representada por una colección de mapas bidimensionales. La esfera es, por tanto, una variedad, en concreto, una variedad riemanniana.

Una variedad es el objeto geométrico estándar en matemática que generaliza la noción intuitiva de curva ( 1-variedad) y de superficie ( 2-variedad) a cualquier dimensión y sobre cuerpos diversos (no necesariamente el de los reales);

Un poco más formalmente, podemos decir que una variedad de dimensión n es un espacio que se parece localmente a . Esto nos hace pensar que una variedad está compuesta de parches n-dimensionales, que donde los parches se traslapan están pegados topológicamente (ver variedad diferenciable).

Una variedad se llama cerrada si no tiene borde y es compacta.

Un campo de investigación muy activo es el estudio de las 3-variedades, que pertenece al área de la topología de dimensiones bajas.

Introducción

Los mapas (o cartas)

Cuando nos desplazamos por la esfera terrestre nos orientamos utilizando mapas planos reunidos en un atlas. En el límite de cada mapa figura la información necesaria para "pegar" mentalmente el mapa siguiente. Para poder hacerlo, es necesaria una cierta redundancia en la información: así, tanto el mapa de Europa como el de Asia pueden contener Moscú. De un modo similar, en matemáticas es posible describir una variedad utilizando una colección de mapas o cartas reunidos en un atlas e indicando como pasar de un mapa a otro. El globo terrestre es un ejemplo típico de variedad, pues puede ser representado por una colección de mapas geográficos.

Un mapa es una porción de la variedad análoga a un espacio vectorial; los cambios de mapa indican cómo estas porciones de variedades se acoplan entre sí. Así, para describir un círculo, es posible tomar como mapas dos arcos superpuestos.

En general no es posible describir una variedad a partir de un solo mapa, pues la estructura global de la variedad es diferente de la estructura simple del espacio modelo. Por ejemplo, ningún mapa plano puede describir convenientemente toda la Tierra. Las variedades aparecen como espacios topológicos y sus topologías sólo están determinadas por la situación de sus respectivos mapas.

Definición

Una variedad n-dimensional M es un conjunto dotado de una colección P de cartas abstractas (funciones uno a uno x de D en M, donde D es un conjunto abierto de un espacio euclídeo de n dimensiones, E(n)) tal que

1) M está cubierta por las imágenes de las cartas de la colección P.
2) Para dos cartas cualesquiera x, y de la colección P, las funciones y'x y x'y son euclidianamente diferenciables ( y están definidas en conjuntos abiertos de E(n) ).

Por lo tanto una superficie es lo mismo que una variedad bidimensional. El espaco euclidiano E(n) es una variedad n-dimensional muy especial, su colección de cartas consiste solamente en la función identidad[1]

Dimensión y topología de las variedades

Figura 2. Ejemplos de curvas :  círculos,  parábolas,  hipérbolas,  cúbicas.

La primera noción relacionada con la variedad es su dimensión. La dimensión designa el número de parámetros independientes que es necesario fijar para situar localmente a un punto sobre la variedad.

  • Las curvas son variedades de dimensión uno.
  • En una superficie, son necesarias dos coordenadas. Sobre la esfera terrestre, por ejemplo, será necesario precisar la latitud y la longitud.
  • Existen numerosas variedades de dimensión superior a dos. Estas variedades son representables gráficamente de manera compleja, para ello, por ejemplo se usan diagramas de Heegaard o diagramas Freedman-Kirby.

Todas las variedades con una misma dimensión n — o n-variedades — tienen la misma topología local. Así, una pequeña porción de la curva es análoga a una recta y una pequeña porción de superficie es análoga a un plano. No obstante, las variedades se distinguen por su aspecto global. Por ejemplo, en la figura 2 la variedad roja está formada por dos círculos, y resulta visiblemente imposible deformarla de manera continua para obtener una de las otras tres curvas. Del mismo modo, una esfera y un toro no se parecen topológicamente. En general, la topología global puede complicarse por la presencia de agujeros, asas, etc.

Variedad abstracta y subvariedad

Figura 4. Botella de Klein.

Existen numerosos subconjuntos del espacio tridimensional que pueden tener una estructura de variedades: el círculo, el cilindro, la esfera, la cinta de Möbius etc. Estos subconjuntos se denominan subvariedades.

Existen también las denominadas variedades abstractas, como la botella de Klein representada en la figura 4. La botella de Klein puede ser descrita por un sistema de mapas y coordenadas representado por la red de meridianos y paralelas de la figura.

El teorema de inmersión de Whitney muestra que toda variedad abstracta de dimensión n puede realizarse como subvariedad de un espacio de dimensión suficientemente grande (2n). Así, la botella de Klein no puede representarse en el espacio de tres dimensiones, pero forma una subvariedad del espacio de cuatro dimensiones.

En 1851 Bernhard Riemann ofreció la primera definición de variedad, a la que denominó Mannigfaltigkeit'
Véase también: Historia de la Geometría

Las variedades de Riemann

Bernhard Riemann fue el primer matemático que extendió sistemáticamente la noción de superficie a los objetos de mayores dimensiones, a los que llamó Mannigfaltigkeit.[2] De este término procede el inglés manifold. Riemann ofrece una descripción intuitiva de variedad, considerando una variedad de dimensión n como un "apilamiento" continuo de variedades de dimensión n-1. En la acepción moderna de variedad, esta descripción intuitiva sólo es válida localmente, es decir, en el entorno de cada punto de la variedad. Riemann utiliza este concepto para describir el conjunto de valores de una variable sometida a ciertas restricciones, como el conjunto de los parámetros que describen la posición de una figura en el espacio.

A partir de entonces, las variedades empiezan a aplicarse en numerosos dominios. En matemáticas, se aplican al estudio de la prolongación analítica y de las variedades abelianas en análisis complejo y al estudio de los flots diferenciables con la aplicación de premier retour de Poincaré. En física, las variedades se aplican a la definición de las mecánicas hamiltoniana y lagrangiana. En 1904, al estudiar las variedades de dimensión 3, Henri Poincaré descubre uno de los problemas más célebres de la teoría de las variedades, la conjetura de Poincaré, demostrada por Grigori Perelmán y validada en junio de 2006.

A pesar de su popularidad, la noción de variedad siguió siendo borrosa. En 1912 Hermann Weyl ofreció una descripción intrínseca de las variedades diferenciables.[3] Las publicaciones de los años 30, con ocasión de la prueba del teorema de inmersión por Hassler Whitney, dejaron bien establecido el concepto.

Other Languages
Alemannisch: Mannigfaltigkeit
العربية: متعدد شعب
български: Многообразие
Ελληνικά: Πολλαπλότητα
English: Manifold
Esperanto: Sternaĵo
eesti: Muutkond
فارسی: خمینه
suomi: Monisto
עברית: יריעה
Bahasa Indonesia: Manifold
日本語: 多様体
한국어: 다양체
lietuvių: Daugdara
norsk nynorsk: Mangfald i matematikk
norsk bokmål: Mangfoldighet
ਪੰਜਾਬੀ: ਮੈਨੀਫੋਲਡ
polski: Rozmaitość
русский: Многообразие
Simple English: Manifold
slovenščina: Mnogoterost
српски / srpski: Многострукост
Tagalog: Manipoldo
Türkçe: Çok katlı
українська: Многовид
Tiếng Việt: Đa tạp
ייִדיש: פלאכטע
中文: 流形
Bân-lâm-gú: To-iūⁿ-thé