Válvula termoiónica

Válvula termoiónica
5C3Ss.jpg
Válvulas termoiónicas
Tipo Semiconductor
Principio de funcionamiento Emisor de campo
Invención John Ambrose Fleming ( 1904)
Lee De Forest ( 1906)
Dr. Walter H. Schottky ( 1919)
Bernhard D.H. Tellegen ( 1926)[1]
Símbolo electrónico
Pentode-Symbol de.svg
Terminales Ánodo, cátodo, filamento, rejilla de control, rejilla pantalla y rejilla supresora
[ editar datos en Wikidata]

La válvula electrónica, también llamada válvula termoiónica, válvula de vacío, tubo de vacío o bulbo, es un componente electrónico utilizado para amplificar, conmutar, o modificar una señal eléctrica mediante el control del movimiento de los electrones en un espacio "vacío" a muy baja presión, o en presencia de gases especialmente seleccionados. La válvula originaria fue el componente crítico que posibilitó el desarrollo de la electrónica durante la primera mitad del siglo XX, incluyendo la expansión y comercialización de la radiodifusión, televisión, radar, audio, redes telefónicas, computadoras analógicas y digitales, control industrial, etc. Algunas de estas aplicaciones son anteriores a la válvula, pero experimentaron un crecimiento explosivo gracias a ella.

A lo largo de su historia, fueron introducidos muchos tipos de válvulas, pero los principios de funcionamiento básicos son:

  • Efecto Edison. La gran mayoría de las válvulas electrónicas están basadas en la propiedad que tienen los metales en caliente de liberar electrones desde su superficie.
  • Gases ionizados. En otros casos, se utilizan las características de la conducción electrónica en gases ionizados, esto resulta principalmente importante en los reguladores de tensión, rectificadores de vapor de mercurio, válvula de conmutación T/R, etc.
  • Efecto fotoeléctrico En otros casos, el principio de funcionamiento se basa en la emisión de electrones por el efecto fotoeléctrico.

El ocaso de esta tecnología comenzó con la invención del transistor y el posterior desarrollo de componentes de estado sólido que eran mucho más pequeños, baratos y fiables que la válvula. Sin embargo hoy en día aún sobrevive en ciertas aplicaciones específicas, donde por razones técnicas resultan más conveniente. Por ejemplo en transmisores de radiofrecuencia de alta potencia y sistemas de radar se utilizan magnetrones, válvulas de onda progresiva TWT, thyratrones, etc. En televisión y sistemas de imagen medicinal aún se utilizan tubos de rayos catódicos o tubos de captura de imagen, y en el hogar es la base de funcionamiento del horno microondas. También siguen siendo ampliamente utilizadas en preamplificadores de micrófonos, guitarras y bajos, así como en equipos de sonido de alta fidelidad.

Historia

Diodo de vacío producido por Philips.

Aunque el efecto de emisión termoiónica fue originalmente informado por Frederick Guthrie en 1873, es la investigación de Thomas Alva Edison el trabajo más a menudo mencionado. Edison, al ver que con el uso el cristal de las lámparas incandescentes se iba oscureciendo, buscó la forma de aminorar dicho efecto, realizando para ello diversos experimentos. Uno de ellos fue la introducción en la ampolla de la lámpara de un electrodo en forma de placa, que se polarizaba eléctricamente con el fin de atraer las partículas que, al parecer, se desprendían del filamento. A pesar de que Edison no comprendía a nivel físico el funcionamiento, y desconocía el potencial de su "descubrimiento", en 1884 Edison lo patentó bajo el nombre de "Efecto Edison".

Triodo de 1906.

Al agregar un electrodo plano (placa), cuando el filamento se calienta se produce una agitación de los átomos del material que lo recubre, y los electrones de las órbitas de valencia son acelerados, alcanzando velocidades de escape, con lo que se forma una nube de electrones por encima del mismo. La nube termoiónica, fuertemente atraída por la placa, debido al potencial positivo aplicado en la misma, da lugar a la circulación de una corriente electrónica a través de la válvula entre el filamento y el ánodo. A este fenómeno se le denomina Efecto Edison-Richardson o termoiónico.

Llegados a este punto, tenemos que la válvula termoiónica más simple está constituida por una ampolla de vidrio, similar a la de las lámparas de incandescencia, a la que se le ha practicado el vacío y en la que se hallan encerrados dos electrodos, denominados cátodo y ánodo.

Físicamente, el cátodo, consiste en un filamento de wolframio, recubierto por una sustancia rica en electrones libres, que se calienta mediante el paso de una corriente. El ánodo está formado por una placa metálica que rodea al filamento a una cierta distancia y a la que se aplica un potencial positivo. Por constar de dos electrodos a la válvula antes descrita se le denomina diodo.

En tanto que la función de cátodo es realizada directamente por el filamento, se trata de una válvula de caldeo directo.

Cuando se quieren obtener mayores corrientes a través de la válvula y un aislamiento eléctrico entre la fuente de corriente de caldeo del filamento y la de ánodo-cátodo, se utiliza un cátodo independiente constituido por un pequeño tubo metálico revestido o "pintado" con algún material rico en electrones libres, como el óxido de torio, que rodea el filamento, aislado eléctricamente, pero muy próximo a él para poder calentarlo adecuadamente. En este caso la válvula se denomina de caldeo indirecto, pudiendo entonces la corriente del caldeo ser incluso alterna. En este tipo de válvulas el filamento solo es el elemento calefactor y no se considera un electrodo activo. Al estar los filamentos aislados se pueden conectar juntos (en serie o paralelo) los filamentos de todas las válvulas del equipo, lo que no es posible con cátodos de caldeo directo.

Si se agregan otros electrodos entre ánodo y cátodo (llamados rejillas) se puede controlar o modular el flujo de electrones que llegan al ánodo, de ahí la denominación de válvula.

Debido al hecho de que la corriente por el interior de la válvula solo puede circular en un sentido, una de las aplicaciones de las válvulas termoiónicas es su utilización como rectificador. Asimismo, y dado que con pequeñas diferencias de potencial aplicadas entre rejilla y cátodo se pueden producir variaciones considerables de la corriente circulante entre cátodo y ánodo, otra aplicación, posiblemente la más importante, es como amplificador.

Other Languages
Afrikaans: Vakuumbuis
Alemannisch: Elektronenröhre
العربية: صمام مفرغ
беларуская: Радыёлямпа
čeština: Elektronka
English: Vacuum tube
Esperanto: Vakutubo
فارسی: لامپ خلأ
magyar: Elektroncső
Bahasa Indonesia: Tabung vakum
日本語: 真空管
한국어: 진공관
latviešu: Elektronu lampa
македонски: Електронска цевка
Bahasa Melayu: Tiub hampagas
မြန်မာဘာသာ: ဗေကျွန်းပြွန်
Nederlands: Elektronenbuis
norsk nynorsk: Radiorøyr
norsk bokmål: Radiorør
română: Tub electronic
srpskohrvatski / српскохрватски: Elektronska cev
Simple English: Vacuum tube
slovenčina: Elektrónka
slovenščina: Elektronka
српски / srpski: Електронска цијев
Seeltersk: Elektrone-Röire
svenska: Elektronrör
Türkçe: Elektron Tübü
oʻzbekcha/ўзбекча: Vakuum lampa
中文: 真空管
粵語: 真空膽