Transformada de Legendre

Interpretación geométrica de la Transformada de Legendre.

En matemáticas se dice que dos funciones diferenciables f y g son una transformada de Legendre si cada una de sus primeras derivadas son función inversa de la otra:

Se dice entonces de f y g que están relacionadas por una transformada de Legendre. Son unívocas hasta una constante aditiva que normalmente se fija mediante el requisito adicional de que

La transformada de Legendre es su propia inversa, y está relacionada a la integración por partes. Dicha transformada se puede generalizar a la transformada de Legendre-Fenchel. Una transformada de Legendre da como resultado una nueva función, en la que se sustituye una o más variables independientes con la derivada de la función original respecto a esa variable. Reciben su nombre debido a Adrien-Marie Legendre.

Motivación

En ciertos problemas matemáticos o físicos es deseable expresar una cierta magnitud f (como la energía interna) como función diferente g en que los argumentos sean precisamente las derivadas de la función respecto a las antiguas variables. Si designamos al nuevo argumento y se tiene que la relación con el viejo argumento es y = df/dx.
La transformación de Legendre permite la construcción anterior, mediante el teorema de la función implícita, de una nueva función g que satisface los requisitos anteriores:


Donde es la función original y es el operador transformada de Legendre. Una función admite transformada de Legendre, si existe su derivada segunda y no se anula nunca:
En esas condiciones el Teorema de la Función Implícita aplicado a la función:


garantiza que existe la función diferenciable, x(y).

Aplicaciones a los potenciales termodinámicos

La estrategia tras el uso de las transformadas de Legendre es desplazar la dependencia de una función de una variable independiente a otra (la derivada de la función original con respecto a su variable independiente) tomando la diferencia entre la función original y su producto. Se usan para realizar transformaciones entre los diversos potenciales termodinámicos.

Por ejemplo, mientras las energía interna es una función explícita de las variables extensivas, entropía, volumen (y composición química)

la entalpía es otra función de estado que puede construirse como la transformada de Legendre de la energía interna U con respecto a −PV

se convierte en función de la entropía y la cantidad intensiva, presión, como variables naturales, y es útil cuando la P (externa) es constante. La transformación estará definida siempre que sea posible "invertir" el volumen en función de la presión y la entropía, cosa que requiere que:

Donde βs es la compresibilidad adiabática.

Las energías libres ( Helmholtz y Gibbs se obtienen mediante sucesivas transformadas de Legendre, eliminando TS (de U y H, respectivamente), cambiando la dependencia de la entropía S a su variable conjugada intensiva temperatura T, y es útil cuando ésta es constante.

Aplicaciones a la electrotecnia

Otro ejemplo de la física: considere un condensador de placas plano-paralelas cuyas placas puedan aproximarse o alejarse una de otra, intercambiando trabajo con fuerzas mecánicas externas que mantienen la separación de las placas (análogo a un gas en un cilindro con un pistón. Queremos que la fuerza atractiva f entre las placas sea función de la separación variable x (Los dos vectores espaciales apuntan en sentidos opuestos). Si las cargas de las placas se mantienen constantes mientras se mueven, la fuerza es el gradiente negativo de la energía electrostática.

Sin embargo, si se mantiene constante el voltaje entre las placas V conectando una batería, que es una reserva de carga a diferencia de potencial constante, la fuerza se convierte en el gradiente negativo de la transformada de Legendre

Las dos funciones resultan ser negativas sólo por la linealidad de la capacitancia. Por supuesto, para una carga, voltaje y distancia dadas, la fuerza estática debe ser la misma mediante cualquier cálculo ya que las placas no pueden "saber" qué se mantendrá constante mientras se mueven.

Aplicaciones en mecánica clásica

En mecánica clásica se usa una transformada de Legendre para derivar la formulación hamiltoniana partiendo de la formulación lagrangiana, y viceversa.

Eso es posible, puesto que la función lagrangiana o lagrangiano que aparece en la formulación lagrangiana es un función explícita de las coordenadas posicionales qj y las velocidades generalizadas dqj /dt (y tiempo). Por su parte la función de Hamilton o hamiltoniano que aparece en la formulación hamiltoniana es función explícita de las coordenadas posicionales y los momentos. El punto importante es que los momentos pueden ser obtenidos como derivadas del lagrangiano:


con lo cual estamos en la condiciones para construir el hamiltoniano a partir del lagrangiano (siempre y cuando además se cumpla la condición requerida por el teorema de la función implícita). En esas condiciones el hamiltoniano viene dado como transformación de Legendre del lagrangiano:


La transformación anterior es posible que el lagrangiano en cada punto del espacio de configuración sea una forma bilineal cuadrática no-degenerada de las velocidades puesto que en ese caso, la condición de existencia de la inversa está automáticamente garantizada por el teorema de la función implícita ya que:


Cada una de las dos formulaciones de la mecánica clásica tiene su propio campo de aplicación, tanto en los fundamentos teóricos del tema como en la práctica, dependiendo de la sencillez de cómputo de un problema en particular. Las coordenadas no tienen necesariamente que ser rectilíneas o cartesinas, sino también ángulos, etc. Una opción óptima tomaría ventaja de las simetrías físicas reales.

Other Languages