Transformada de Fourier discreta

En matemáticas, la transformada discreta de Fourier o DFT (del inglés, discrete Fourier transform) es un tipo de transformada discreta utilizada en el análisis de Fourier. Transforma una función matemática en otra, obteniendo una representación en el dominio de la frecuencia, siendo la función original una función en el dominio del tiempo. Pero la DFT requiere que la función de entrada sea una secuencia discreta y de duración finita. Dichas secuencias se suelen generar a partir del muestreo de una función continua, como puede ser la voz humana. Al contrario que la transformada de Fourier en tiempo discreto (DTFT), esta transformación únicamente evalúa suficientes componentes frecuenciales para reconstruir el segmento finito que se analiza. Utilizar la DFT implica que el segmento que se analiza es un único período de una señal periódica que se extiende de forma infinita; si esto no se cumple, se debe utilizar una ventana para reducir los espurios del espectro. Por la misma razón, la DFT inversa (IDFT) no puede reproducir el dominio del tiempo completo, a no ser que la entrada sea periódica indefinidamente. Por estas razones, se dice que la DFT es una transformada de Fourier para análisis de señales de tiempo discreto y dominio finito. Las funciones sinusoidales base que surgen de la descomposición tienen las mismas propiedades.

La entrada de la DFT es una secuencia finita de números reales o complejos, de modo que es ideal para procesar información almacenada en soportes digitales. En particular, la DFT se utiliza comúnmente en procesado digital de señales y otros campos relacionados dedicados a analizar las frecuencias que contiene una señal muestreada, también para resolver ecuaciones diferenciales parciales, y para llevar a cabo operaciones como convoluciones o multiplicaciones de grandes números enteros. Un factor muy importante para este tipo de aplicaciones es que la DFT puede ser calculada de forma eficiente en la práctica utilizando el algoritmo de la transformada rápida de Fourier o FFT (Fast Fourier Transform).

Los algoritmos FFT se utilizan tan habitualmente para calcular DFTs que el término "FFT" muchas veces se utiliza en lugar de "DFT" en lenguaje coloquial. Formalmente, hay una diferencia clara: "DFT" hace alusión a una transformación o función matemática, independientemente de cómo se calcule, mientras que "FFT" se refiere a una familia específica de algoritmos para calcular DFTs.

Definición

La secuencia de N números complejos x0, ..., xN−1 se transforma en la secuencia de N números complejos X0, ..., XN−1 mediante la DFT con la fórmula:

donde i es la unidad imaginaria y es la N-ésima raíz de la unidad. (Esta expresión se puede escribir también en términos de una matriz DFT; cuando se escala de forma apropiada se convierte en una matriz unitaria y Xk puede entonces ser interpretado como los coeficientes de x en una base ortonormal.)

La transformada se denota a veces por el símbolo , igual que en o o .

La transformada inversa de Fourier discreta (IDFT) viene dada por

Una descripción simple de estas ecuaciones es que los números complejos representan la amplitud y fase de diferentes componentes sinusoidales de la señal de entrada . La DFT calcula a partir de , mientras que la IDFT muestra cómo calcular como la suma de componentes sinusoidales con una frecuencia de ciclos por muestra. Escribiendo las ecuaciones de este modo, estamos haciendo un uso extensivo de la fórmula de Euler para expresar sinusoides en términos de exponentes complejas, lo cual es mucho más sencillo de manipular. Del mismo modo, escribiendo en forma polar, obtenemos una sinudoide de amplitud y fase a partir del módulo y argumento complejos de , respectivamente:

donde atan2 es la forma bi-argumental de la función arcotangente. Nótese que el factor de normalización que multiplica a la DFT y la IDFT (que son 1 y 1/N) y los signos de los exponentes se colocan meramente por convenio, y varían dependiendo de la aplicación. El único requisito para este convenio es que la DFT y la IDFT tengan exponentes de signo opuesto y que el producto de sus factores de normalización sea 1/N. Una normalización de para ambas DFT y IDFT hace las transformadas unitarias, lo cual tiene ciertas ventajas teóricas, pero suele ser más práctico a la hora de efectuar operaciones numéricas con el ordenador efectuar el escalado de una sola vez (y un escalado unitario suele ser conveniente en otras ocasiones).

(El convenio del signo negativo en el exponente suele ser adecuado porque significa que es la amplitud de una "frecuencia positiva" . De forma equivalente, la DFT se suele considerar como un filtro adaptado: cuando se busca una frecuencia de +1, se correlaciona la señal de entrada con una frecuencia de −1.)

En adelante, los términos "secuencia" y "vector" serán considerados equivalentes.

Other Languages