Topología algebraica

La Topología algebraica es una rama de la matemática en la que se usan las herramientas del álgebra abstracta para estudiar los espacios topológicos. El objetivo básico es encontrar invariantes algebraicas que clasifican los espacios topológicos hasta el homeomorfismo, aunque normalmente muchos se clasifican hasta la equivalencia homotópica.

Un toro, uno de los objetos más frecuentemente estudiados en topología algebraica

El método de los invariantes algebraicos

La meta es clasificar los espacios topológicos. Un nombre antiguo para esta materia era el de topología combinatoria, que ponía el énfasis en cómo un espacio dado X podía construirse a partir de espacios más pequeños. El método básico que se aplica ahora en topología algebraica es el de investigar los espacios por medio de los invariantes algebraicos: por ejemplo aplicándolos, relacionándolos con los grupos, que tienen bastante estructura utilizable, y de manera que se respete la relación de homeomorfismo de espacios.

Las dos formas principales como se hace esto son a través de los grupos fundamentales, o más en general la Teoría de homotopía, y por medio de los grupos de homología y de cohomología. Los grupos fundamentales nos suministran información básica sobre la estructura de un espacio topológico; pero son a menudo no-abelianos y pueden ser difíciles de usar. El grupo fundamental de un complejo simplicial (finito) tiene una presentación finita.

Los grupos de homología y cohomología, por otra parte, son abelianos, y en muchos casos importantes son finitamente generados. Los grupos abelianos finitamente generados pueden clasificarse completamente y son particularmente fáciles de usar.

Other Languages