Tiempo atmosférico

Tormenta cerca de Gazrajau ( Madeira).

El tiempo es el estado de la atmósfera, al grado en que está caliente o fría, húmeda o seca, calmada o tormentoso, clara o nubosa.[4] Cuando se utiliza a secas, el "tiempo" se entiende generalmnete referido al tiempo de la Tierra.

El tiempo es impulsado por la presión de aire, la temperatura y las diferencias de humedad entre un lugar y otro. Estas diferencias pueden ocurrir debido al ángulo del sol en cualquier sitio particular, el cual varía por latitud desde los trópicos. El fuerte contraste de temperatura entre el aire polar y el tropical da origen al aumento a la corriente en chorro. Sistemas de tiempo en las latitudes medias, como los ciclones extratopicales, son causados por inestabilidades del flujo de corriente en chorro. Debido a que el eje de la Tierra está inclinado en relación a su plano orbital, la luz solar incide en ángulos diferentes en los distintos meses del año. Sobre la superficie de la Tierra, las temperaturas normalmente varían anualmente entre ±40 °C. Durante miles de años, cambios en la órbita terrestre pueden afectar la cantidad y distribución de la energía solar recibida por la Tierra, influenciando así el clima a largo plazo y el cambio climático global.

Las diferencias de temperatura de la superficie a su vez causan diferencias de presión. Las altitudes más elevadas son más frías que las bajas debido a diferencias en calentamiento de compresión. El pronóstico del tiempo es la aplicación de la ciencia y tecnología para pronosticar el estado de la atmósfera para un momento futuro y una ubicación dada. El sistema es un caótico; cambios tan pequeños a una parte del sistema puede crecer para tener efectos grandes en todo el sistema. A través de la historia, han existido intentos humanos de controlar el tiempo y existe evidencia de que las actividades humanas como la agricultura e la industria han modificado los patrones atmosféricos.

El estudio sobre cómo funciona el tiempo en otros planetas han sido útiles en comprender su funcionamiento en la Tierra. Un lugar famoso en el sistema solar, es la Gran Mancha Roja de Júpiter, es una tormenta anticiclónica que existe desde al menos 300 años. No obstante, el tiempo no se limita a los cuerpos planetarios. La corona de una estrella se pierde constantemente en el espacio, creando lo que esencialmente es una muy delgada atmósfera a través del sistema solar. El transporte de masa expulsado del Sol se conoce como viento solar.

Origen y flujo de la energía atmosférica

Una imagen de satélite de la NASA de la desembocadura del Amazonas nos muestra algunos de los flujos de energía en la atmósfera: los rayos solares calientan la superficie terrestre, las tierras en primer lugar (con mayor rapidez) y las aguas después (más lentamente). El calentamiento de las tierras calienta a su vez el aire superficial, que se eleva, enfriándose y condensándose la humedad atmosférica que se convierte en agua líquida que forma las nubes. Mientras tanto, el agua de los grandes ríos amazónicos está absorbiendo la radiación solar más lentamente por lo que no hay evaporación de sus aguas y, por lo tanto, tampoco hay calentamiento del aire en esas áreas, no hay convección ni condensación en ellas.

La insolación

Casi la totalidad de la energía solar que genera todos los cambios atmosféricos procede de la radiación solar, es decir, de la insolación. Pero los rayos solares no calientan directamente al aire atmosférico por la propiedad del aire en su conjunto de la diatermancia que explica que la atmósfera se deja atravesar por los rayos solares sin prácticamente calentarse. Así el calentamiento de la atmósfera por la radiación solar es indirecto: los rayos solares calientan primero la litósfera (de manera rápida) y la hidrósfera (más lentamente que la litosfera). Cuando tanto la litósfera como la hidrósfera se han calentado, van cediendo ese calor a la atmósfera, la primera rápidamente y la segunda más lentamente, todo ello de acuerdo a lo explicado sobre el calentamiento de la litosfera y la hidrosfera en el artículo ya citado (diatermancia). La imagen del delta del río Amazonas que aquí se presenta está tomada durante la mañana. Si la comparásemos con una imagen similar durante el anochecer ese mismo día (ello se hace posible, no en una imagen del espectro visible, sino en una imagen infrarroja) veríamos que la situación se invierte, apareciendo mayor condensación sobre los ríos que sobre las tierras.

Otras fuentes de energía atmosférica

Erupción del Volcán Mayón en la isla de Luzón, Filipinas, en 1984. Puede verse a la izquierda una nube formada por vapor de agua muy caliente de la erupción al enfriarse con la temperatura ambiente.
Fuente hidrotermal submarina, cuya energía produce el ambiente que posibilita la existencia de fauna abisal en sus alrededores a pesar de la enorme presión que existe por la gran profundidad del fondo oceánico

Además de la radiación solar existen tres fuentes menores de energía térmica que pueden calentar la atmósfera:

  • La energía geotérmica de los puntos calientes en el fondo oceánico. Esta energía pasa al agua oceánica que se calienta o llega incluso a hervir, evaporándose con lo que absorbe calor que, al condensarse, pasa al aire atmosférico.
  • Las erupciones volcánicas también pueden llegar a calentar la atmósfera de manera directa, sin que la radiación solar intervenga.
  • La transpiración de plantas y animales así como la respiración de los seres vivos. Esta última fuente de calor es muy importante, como nos muestran las fotografías infrarrojas de la las zonas de vegetación presentes en la superficie terrestre. Sin embargo, estas tres fuentes de calor resultan insignificantes cuando las comparamos con la energía solar recibida en la superficie terrestre. Si aquí se señalan es para aclarar la idea inicial de este tema de que la casi totalidad de la energía que se almacena en la atmósfera procede de la radiación solar. Y de las tres fuentes de calentamiento distinto a la radiación solar, la formada por la transpiración de la vegetación es la más importante por su estabilidad en el tiempo y por usar el CO2 como materia prima, además de la liberación de oxígeno libre, sin lo cual la vida de los animales se haría imposible
Other Languages
Alemannisch: Wetter
aragonés: Orache
Ænglisc: Weder
العربية: طقس
башҡортса: Һауа торошо
Boarisch: Weda
žemaitėška: Uorā
беларуская: Надвор'е
беларуская (тарашкевіца)‎: Надвор’е
भोजपुरी: मौसम
বাংলা: আবহাওয়া
bosanski: Vrijeme (klima)
کوردیی ناوەندی: کەش
čeština: Počasí
kaszëbsczi: Wiodro
Cymraeg: Tywydd
dansk: Vejr
Deutsch: Wetter
Ελληνικά: Καιρός
English: Weather
Esperanto: Vetero
eesti: Ilm
euskara: Eguraldi
فارسی: آب‌وهوا
suomi: Sää
Võro: Ilm
føroyskt: Veður
Gàidhlig: Aimsir
गोंयची कोंकणी / Gõychi Konknni: हवामान
ગુજરાતી: હવામાન
עברית: מזג אוויר
हिन्दी: मौसम
hrvatski: Vrijeme (klima)
magyar: Időjárás
Հայերեն: Եղանակ
Bahasa Indonesia: Cuaca
Iñupiak: Siḷa
íslenska: Veður
日本語: 気象
Patois: Weda
Basa Jawa: Cuaca
ქართული: ამინდი
Qaraqalpaqsha: Hawa rayı
қазақша: Ауа райы
kalaallisut: Silasiorneq
ಕನ್ನಡ: ಹವಾಮಾನ
한국어: 날씨
къарачай-малкъар: Кюнню халы
Latina: Status caeli
Lëtzebuergesch: Wieder
Limburgs: Waer
lietuvių: Orai
latviešu: Laikapstākļi
मैथिली: मौसम
മലയാളം: കാലാവസ്ഥ
монгол: Цаг агаар
मराठी: हवामान
Bahasa Melayu: Cuaca
नेपाली: मौसम
norsk nynorsk: Vêr
norsk bokmål: Vær (meteorologi)
Sesotho sa Leboa: Boso
occitan: Temps (clima)
ਪੰਜਾਬੀ: ਮੌਸਮ
Papiamentu: Wèr
polski: Pogoda
پنجابی: موسم
română: Vreme
русский: Погода
русиньскый: Хвіля
саха тыла: Күн-дьыл туруга
Scots: Wather
سنڌي: موسم
srpskohrvatski / српскохрватски: Vrijeme (klima)
සිංහල: කාලගුණය
Simple English: Weather
slovenčina: Počasie
slovenščina: Vreme
shqip: Moti
Seeltersk: Weeder
svenska: Väder
Kiswahili: Hali ya hewa
தமிழ்: வானிலை
తెలుగు: పవనస్థితి
Türkçe: Hava durumu
татарча/tatarça: Һава торышы
українська: Погода
اردو: موسم
oʻzbekcha/ўзбекча: Ob-havo
vepsän kel’:
Tiếng Việt: Thời tiết
მარგალური: ტაროსი
ייִדיש: וועטער
中文: 天气
Bân-lâm-gú: Thiⁿ-khì
粵語: 天氣