Teorema fundamental del álgebra

El teorema fundamental del álgebra establece que todo polinomio de grado mayor que cero tiene una raíz.[2]​ de los números reales.

Aunque este enunciado, en principio, parece ser una declaración débil, implica que todo polinomio de grado n de una variable con grado mayor que cero con coeficientes complejos tiene, contando las multiplicidades, exactamente n raíces complejas. La equivalencia de estos dos enunciados se realiza mediante la división polinómica sucesiva por factores lineales.

Hay muchas demostraciones de esta importante proposición, que requieren bastantes conocimientos matemáticos para formalizarlas.

Historia

Pedro Rothe (Petrus Roth), en su libro Arithmetica Philosophica (publicado en 1608), escribió que una ecuación polinómica de grado (con coeficientes reales) puede tener soluciones. Alberto Girardo, en su libro L'invention nouvelle en l'Algebre (publicado en 1629), aseveró que una ecuación de grado tiene soluciones, pero no menciona que dichas soluciones deban ser números reales. Más aún, él agrega que su aseveración es válida "salvo que la ecuación sea incompleta", con lo que quiere decir que ninguno de los coeficientes del polinomio sea igual a cero. Sin embargo, cuando explica en detalle a qué se está refiriendo, se hace evidente que el autor piensa que la aseveración siempre es cierta; en particular, muestra que la ecuación

a pesar de ser incompleta, tiene las siguientes cuatro soluciones (la raíz 1 tiene multiplicidad 2):

Leibniz en 1702 y más tarde Nikolaus Bernoulli, conjeturaron lo contrario.

Como se mencionará de nuevo más adelante, se sigue del teorema fundamental del álgebra que todo polinomio con coeficientes reales y de grado mayor que cero se puede escribir como un producto de polinomios con coeficientes reales del cual sus grados son 1 o 2. De todas formas, en 1702 Leibniz dijo que ningún polinomio de tipo (con a real y distinto de 0) se puede escribir en tal manera. Luego, Nikolaus Bernoulli hizo la misma afirmación concerniente al polinomio , pero recibió una carta de Euler en 1742 en el que le decía que su polinomio pasaba a ser igual a:

con α igual a raíz cuadrada de 4 + 2√7. Igualmente mencionó que:

El primer intento que se hizo para demostrar el teorema lo hizo d'Alembert en 1746. Su demostración tenía un fallo, en tanto que asumía implícitamente como cierto un teorema (actualmente conocido como el teorema de Puiseux) que no sería demostrado hasta un siglo más tarde. Entre otros Euler ( 1749), de Foncenex ( 1759), Lagrange ( 1772) y Laplace ( 1795) intentaron demostrar este teorema.

A finales del siglo XVIII, se presentaron dos nuevas pruebas, una por James Wood y otra por Gauss ( 1799), pero ambas igualmente incorrectas. Finalmente, en 1806 Argand publicó una prueba correcta para el teorema, enunciando el teorema fundamental del álgebra para polinomios con coeficientes complejos. Gauss produjo otro par de demostraciones en 1816 y 1849, siendo esta última otra versión de su demostración original.

El primer libro de texto que contiene la demostración de este teorema fue escrito por Cauchy. Se trata de Course d'anlyse de l'École Royale Polytechnique ( 1821). La prueba es la debida a Argand, sin embargo, en el texto no se le da crédito.

Ninguna de las pruebas mencionadas más arriba son constructivas. Es Weierstrass quien por primera vez, a mediados del siglo XIX, menciona el problema de encontrar una prueba constructiva del teorema fundamental del álgebra. En 1891 publica una demostración de este tipo. En 1940 Hellmuth Knesser consigue otra prueba de este estilo, que luego sería simplificada por su hijo Marin Kneser en 1981.

Other Languages
slovenščina: Osnovni izrek algebre
oʻzbekcha/ўзбекча: Algebraning asosiy teoremasi