Teorema de Liouville (análisis complejo)

En matemáticas, y en particular en el análisis complejo, el teorema de Liouville afirma que si una función es holomorfa en todo el plano complejo y está acotada, entonces es constante. Nótese que esta afirmación es falsa en los números reales (tómese, por ejemplo, la función , que está acotada pero no es constante).

Enunciado del teorema

Sea una función entera[1] y acotada, es decir, existe tal que

;

entonces resulta que es constante.

Una versión más general de este teorema afirma que si es una función entera y si se tiene que , con para algún , entonces debe ser un polinomio de grado a lo más . Como consecuencia directa de lo anterior, si , con , un polinomio de grado , entonces es un polinomio de grado a lo más .

Other Languages