Teorema de Euler para poliedros

En 1750, Leonhard Euler publicó su teorema para poliedros, el cual indica la relación entre el número de caras, aristas y vértices de un poliedro convexo[1]​ (sin orificios, ni entrantes). El famoso teorema o fórmula expresa una constante que no se altera en caso de rotaciones, traslaciones de dichos poliedros. En la proposición también concluye que solo pueden ser cinco los sólidos regulares y establece para ellos varias relaciones:

Teorema de los poliedros












donde:

= Número de caras
= Número de vértices
= Número de aristas
= Número de lados del polígono regular
= Número de aristas que convergen en los vértices

La relación (1) se llama característica de Euler y sigue cumpliéndose para todos los poliedros convexos.

Ejemplo

Para un cubo se tiene . La característica de Euler es . Cada cara es un cuadrado, por tanto . En cada vértice concurren aristas.