Teorema de Cantor

El teorema de Cantor es un resultado formalizable en la teoría de conjuntos de Zermelo-Fränkel, que afirma lo siguiente:

El conjunto potencia de cualquier conjunto A tiene una cardinalidad estrictamente mayor que la cardinalidad del propio A.

Discusión

El teorema de Cantor es obvio para conjuntos finitos: si un conjunto finito tiene n elementos entonces el conjunto de partes de ese conjunto tiene 2n elementos. El hecho de que sea válido para todo conjunto infinito no es del todo intuitivo, pero permite establecer varios resultados interesantes:

  • Existe una infinidad de cardinales transfinitos, lo cual significa que en realidad existen muchos tipos de infinito (de hecho una infinidad) cada uno mayor que el anterior. Este resultado a priori es muy poco intuitivo, pero tremendamente importante en la fundamentación de las matemáticas.
  • No existe ninguna manera de enumerar todos los subconjuntos de .

Para ilustrar la validez de este teorema para conjuntos infinitos se reproduce a continuación una demostración.

Other Languages