Teorema de Bell

El teorema de Bell o desigualdades de Bell se aplica en mecánica cuántica para cuantificar matemáticamente las implicaciones planteadas teóricamente en la paradoja de Einstein-Podolsky-Rosen y permitir así su demostración experimental. Debe su nombre al científico norirlandés John S. Bell, que la presentó en 1964.

El teorema de Bell es un metateorema que muestra que las predicciones de la mecánica cuántica (MC) no son intuitivas, y afecta a temas filosóficos fundamentales de la física moderna. Es el legado más famoso del físico John S. Bell. El teorema de Bell es un teorema de imposibilidad, que afirma que:

Ninguna teoría física de variables ocultas locales puede reproducir todas las predicciones de la mecánica cuántica.

Introducción

Ilustración del test de Bell para partículas de espín 1/2. La fuente produce un par de espín singlete, una partícula se envía a Alicia y otra a Bob. Cada una mide uno de los dos espines posibles.

Como en el experimento expuesto en la paradoja EPR, Bell consideró un experimento donde una fuente produce pares de partículas entrelazadas. Por ejemplo, cuando un par de partículas con espines entrelazados es creado; una partícula se envía a Alicia y la otra a Bob. En cada intento, cada observador independientemente elige entre varios ajustes del detector y realiza una medida sobre la partícula (Nota: aunque la propiedad entrelazada utilizada aquí es el espín de la partícula, podría haber sido cualquier "estado cuántico" entrelazado que codifique exactamente un bit cuántico.)

Cuando Alicia y Bob miden el espín de la partícula a lo largo del mismo eje (pero en direcciones opuestas), obtienen resultados idénticos el 100% de las veces.

Pero cuando Bob mide en ángulos ortogonales (rectos) a las medidas de Alicia, obtienen resultados idénticos únicamente el 50% de las veces.

En términos matemáticos, las dos medidas tienen una correlación de 1, o correlación perfecta cuando se miden de la misma forma; pero cuando se miden en ángulos rectos, tienen una correlación de 0; es decir, ninguna correlación. (Una correlación de −1 indicaría tener resultados opuestos en cada medida.)

Mismo eje: par 1 par 2 par 3 par 4 ...n
Alicia, 0°: + + ...
Bob, 180°: + + ...
Correlación: ( +1 +1 +1 +1 ...)/n = +1
(100% idéntica)
Ejes ortogonales: par 1 par 2 par 3 par 4 ...n
Alicia, 0°: + + ...
Bob, 90°: + + ...
Correlación: ( −1 +1 +1 −1 ...)/n = 0.0
(50% idéntica)

De hecho, los resultados pueden explicarse añadiendo variables ocultas locales - cada par de partículas podría haberse enviado con instrucciones sobre cómo comportarse según se las mida en los dos ejes (si '+' o '−' para cada eje).

Claramente, si la fuente únicamente envía partículas cuyas instrucciones sean idénticas para cada eje, entonces cuando Alicia y Bob midan sobre el mismo eje, obtendrán siempre resultados idénticos, o bien (+,+) o (−,−). Pero (si se generan por igual todos las posibles combinaciones de + y −) cuando ellos midan sobre ejes perpendiculares verán correlación cero.

Ahora, considere que Alicia o Bob pueden rotar sus aparatos de forma relativa entre ellos un ángulo cualquiera y en cualquier momento antes de medir las partículas, incluso después de que las partículas abandonen la fuente. Si las variables ocultas locales determinan el resultado de las medidas, entonces las partículas deberían codificar en el momento de abandonar la fuente los resultados de medida para cualquier posible dirección de medida, y no sólo los resultados para un eje particular.

Bob comienza este experimento con su aparato rotado 45 grados. Llamamos a los ejes de Alicia y , y a los ejes rotados de Bob y . Entonces, Alice y Bob graban las direcciones en que ellos miden las partículas, y los resultados que obtienen. Al final, comparan sus resultados, puntuando +1 por cada vez que obtienen el mismo resultado y −1 si obtienen un resultado opuesto - excepto que si Alicia midió en y Bob midió en , puntuarán +1 por un resultado opuesto y −1 para el mismo resultado.

Utilizando este sistema de puntuación, cualquier posible combinación de variables ocultas produciría una puntuación media esperada de, como máximo, +0.5 (por ejemplo, mirando la tabla inferior, donde los valores más correlacionados de las variables ocultas tienen una correlación media de +0.5, i.e. idénticas al 75%. El "sistema de puntuación" inusual asegura que la máxima correlación media esperada es +0.5 para cualquier posible sistema que esté basado en variables locales).

Modelo clásico: variables altamente correlacionadas variables menos correlacionadas
Variable oculta para 0° (a): + + + + + + + +
Variable oculta para 45° (b): + + + + + + + + -
Variable oculta para 90° (a'): + + + + - + + + −- +
Variable oculta para 135° (b'): + + + + + + + +
Puntuación de correlación:
Si se mide sobre a-b, puntuación: +1 +1 +1 −1 +1 +1 +1 -1 +1 −1 −1 −1 −1 −1 −1 +1
Si se mide sobre a' − b, puntuación: +1 +1 −1 +1 +1 +1 −1 +1 −1 −1 −1 +1 +1 −1 −1 −1
Si se mide sobre a'-b', puntuación: +1 −1 +1 +1 +1 −1 +1 +1 -1 +1 −1 −1 −1 −1 +1 −1
Si se mide sobre a − b', puntuación: −1 +1 +1 +1 −1 +1 +1 +1 −1 −1 +1 −1 −1 +1 −1 −1
Puntuación esperada promedio: +0.5 +0.5 +0.5 +0.5 +0.5 +0.5 +0.5 +0.5 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5

El teorema de Bell muestra que si las partículas se comportan como predice la mecánica cuántica, Alicia y Bob pueden puntuar más alto que la predicción clásica de variables ocultas de correlación +0.5; si los aparatos se rotan 45° entre sí, la mecánica cuántica predice que la puntuación esperada promedio será 0.71.

(Predicción cuántica en detalle: cuando las observaciones en un ángulo de se realizan sobre dos partículas entrelazadas, la correlación predicha es . La correlación es igual a la longitud de la proyección del vector de la partícula sobre su vector de medida; por trigonometría, . es 45°, y es , para todos los pares de ejes excepto – donde son 135° y –, pero este último se toma negativo en el sistema de puntuación acordado, por lo que la puntuación total es =0.707. En otras palabras, las partículas se comportan como si cuando Alicia o Bob hacen una medida, la otra partícula decidiese conmutar para tomar esa dirección instantáneamente).

Varios investigadores han realizado experimentos equivalentes utilizando diferentes métodos. Parece que muchos de estos experimentos producen resultados que están de acuerdo con las predicciones de la mecánica cuántica [1], y tienden a refutar las teorías de variables ocultas locales y la demostración de la de comunicación, con los experimentos asociados para cerrar estas escapatorias. Tras toda la experimentación actual parece que estos experimentos dan prima facie soporte para las predicciones de la mecánica cuántica de no localidad [3].

Other Languages
العربية: مبرهنة بل
беларуская: Няроўнасці Бела
فارسی: قضیه بل
עברית: משפט בל
italiano: Teorema di Bell
한국어: 벨 부등식
Nederlands: Stelling van Bell
norsk nynorsk: Bells teorem
norsk bokmål: Bells ulikheter
português: Teorema de Bell
Simple English: Bell's theorem
slovenčina: Bellova nerovnosť
svenska: Bells teorem
українська: Теорема Белла
中文: 贝尔定理