Teoría de variables ocultas

En Física, se define como teorías de variables ocultas a formulaciones alternativas que suponen la existencia de ciertos parámetros desconocidos que serían los responsables de las características estadísticas de la mecánica cuántica. Dichas formulaciones pretenden restablecer el determinismo eliminado por la interpretación de la escuela de Copenhague, que es la interpretación estándar en mecánica cuántica. Suponen una crítica a la naturaleza probabilística de la mecánica cuántica, la cual conciben como una descripción incompleta del mundo físico.

La mecánica cuántica describe el estado instantáneo de un sistema o estado cuántico con una función de ondas que codifica la distribución de probabilidad de todas las propiedades medibles, u observables. Los seguidores de las teorías de variables ocultas conciben la mecánica cuántica como una descripción provisional del mundo físico. Creen en la existencia de teorías en que los comportamientos probabilísticos de la teoría cuántica se corresponderían con un comportamiento estadístico asociado a partes del sistema y parámetros que no nos son accesibles (variables ocultas). Es decir, conciben las probabilidades cuánticas como fruto del desconocimiento de estos parámetros.

Una minoría de físicos es seguidora de estas teorías. Diversos experimentos han descartado una amplia clase de teorías de variables ocultas (las llamadas teorías de variables ocultas locales) por ser incompatibles con las observaciones.[ cita requerida]

Introducción histórica

En la conferencia de Solvay de 1927, Born y Heisenberg desarrollaron la interpretación mas aceptada actualmente al afirmar[1] que

"el determinismo, hasta hoy considerado como la base de las ciencias exactas, debe ser abandonado [...] mantenemos que la mecánica cuántica es una teoría completa cuyas hipótesis fundamentales, físicas y matemáticas, no son susceptibles de modificación."

Entendemos por completitud el que la función de ondas Ψ proporcione una descripción exhaustiva de un sistema individual. Frente a ellos, la postura de Albert Einstein queda perfectamente descrita en una carta a Born en 1926:[2]

"La mecánica cuántica es algo muy serio. Pero una voz interior me dice que, de todos modos, no es ese el camino. La teoría dice mucho, pero en realidad no nos acerca demasiado al secreto del Viejo. En todo caso estoy convencido de que Él no juega a los dados."

Quería así expresar su convencimiento de que las teorías físicas deben ser deterministas para ser completas. Un intento de refutar la completitud que pregonaba la escuela de Copenhague lo constituye el argumento de Einstein-Podolski-Rosen, más conocido como paradoja EPR. Otros intentos de restablecer el determinismo partieron de la suposición de que tal vez la mecánica cuántica no era completa y tal vez existían parámetros adicionales ocultos, o variables ocultas que una vez tenidas en cuenta restauraban el determinismo clásico.

En referencia a eso, Max Born, en su artículo de 1926 sobre la interpretación estadística de la función de onda, ya había señalado que:

"Cualquiera que no esté satisfecho con estas ideas [estadísticas] puede sentirse libre para suponer que existen parámetros adicionales, todavía no introducidos en la teoría, que determinen cada suceso individual"

Más tarde John von Neumann, en sus «Fundamentos matemáticos de la Mecánica Cuántica» negó totalmente su existencia, basándose en una demostración físicomatemática, cuando dice: "...una tal explicación [las variables ocultas] es incompatible con ciertos postulados fundamentales de la mecánica cuántica". Ningún físico cuestionó (explícitamente) este resultado antes de 1952, año en que David Bohm publica una teoría que admite que ciertos tipos de variables ocultas sí serían compatibles con la mecánica cuántica. Esto no tuvo gran influencia en la mayoría de los físicos, como Wolfgang Pauli, que en 1953 se remitía a la demostración de von Neumann; sin embargo, Louis de Broglie sí se mostraba favorable a la utilización de variables ocultas para explicar la dualidad onda-corpúsculo, aunque anteriormente había sido un ferviente partidario de la interpretación de von Neumann. De Broglie utilizó el principio de indeterminación de Heisenberg del movimiento de una partícula para aplicarlo a su onda. Esto le permitía suponer que características estadísticas de ella provenían de la imposibilidad de medir el estado de la partícula, aun cuando éste fuese definido.

En 1966 un trabajo de John Bell abrió un nuevo campo de investigación a partir de una hipótesis sobre la combinación lineal de operadores hermíticos.

Other Languages