Teoría de la relatividad especial

Teoría de la Relatividad, parte de Walk of Ideas, en la Isla de los Museos ( Berlín). Festejando el Año mundial de la física 2005 en el centenario de la publicación de la ecuación más famosa del mundo.

La teoría de la relatividad especial, también llamada teoría de la relatividad restringida, es una teoría de la física publicada en 1905 por Albert Einstein.[1] Surge de la observación de que la velocidad de la luz en el vacío es igual en todos los sistemas de referencia inerciales y de obtener todas las consecuencias del principio de relatividad de Galileo, según el cual cualquier experimento realizado, en un sistema de referencia inercial, se desarrollará de manera idéntica en cualquier otro sistema inercial.

La teoría es "especial", ya que sólo se aplica en el caso especial donde la curvatura del espacio-tiempo debido a la gravedad es despreciable.[4]

La Teoría de la relatividad especial estableció nuevas ecuaciones que facilitan pasar de un sistema de referencia inercial a otro. Las ecuaciones correspondientes conducen a fenómenos que chocan con el sentido común, como son la contracción espacial, la dilación del tiempo, un límite universal a la velocidad, la equivalencia entre masa y energía o la relatividad de la simultaneidad entre otros, siendo la fórmula E=mc2 o la paradoja de los gemelos dos de los ejemplos más conocidos.[5]

La relatividad especial tuvo también un impacto en la filosofía, eliminando toda posibilidad de existencia de un tiempo y de un espacio absoluto en el conjunto del universo.

Historia

A finales del siglo XIX los físicos pensaban que la mecánica clásica de Newton, basada en la llamada relatividad de Galileo (origen de las ecuaciones matemáticas conocidas como transformaciones de Galileo), describía los conceptos de velocidad y fuerza para todos los observadores (o sistemas de referencia). Sin embargo, Hendrik Lorentz y un poco antes Woldemar Voigt habían comprobado que las ecuaciones de Maxwell, que gobiernan el electromagnetismo, no cumplían las transformaciones de Galileo cuando el sistema de referencia inercial varía (por ejemplo, cuando se considera el mismo problema físico desde el punto de vista de dos observadores que se mueven uno respecto del otro). En particular las ecuaciones de Maxwell parecían requerir que la velocidad de la luz era constante (razón por la que se interpretó que esa velocidad se refería a la velocidad de la luz respecto al éter). Sin embargo, el experimento de Michelson y Morley sirvió para confirmar que la velocidad de la luz permanecía constante para cualquier velocidad y movimiento relativo al supuesto éter omnipresente y, además, independientemente del sistema de referencia en el cual se medía (contrariamente a lo esperado de aplicar las transformaciones de Galileo) .[6] Por tanto la hipótesis del éter quedaba descartada y se abría un problema teórico grave asociado a las transformaciones de Galileo. Hendrik Lorentz ya había encontrado que las transformaciones correctas que garantizaban la invariancia no eran las de transformaciones de Galileo, sino las que actualmente se conocen como transformaciones de Lorentz.

Durante años las transformaciones de Lorentz y los trabajos de Henri Poincaré sobre el tema quedaron inexplicados hasta que Albert Einstein, un físico desconocido hasta 1905, sería capaz de darles una interpretación considerando el carácter relativo del tiempo y el espacio. Einstein también había sido influido por el físico y filósofo Ernst Mach.[1] cambió radicalmente la percepción del espacio y el tiempo que se tenía en ese entonces. En ese artículo Einstein introducía lo que ahora conocemos como teoría de la relatividad especial. Esta teoría se basaba en el principio de relatividad y en la constancia de la velocidad de la luz en cualquier sistema de referencia inercial. De ello Einstein dedujo las ecuaciones de Lorentz. También reescribió las relaciones del momento y de la energía cinética para que éstas también se mantuvieran invariantes.

La teoría permitió establecer la equivalencia entre masa y energía y una nueva definición del espacio-tiempo. De ella se derivaron predicciones y surgieron curiosidades. Como ejemplos, un observador atribuye a un cuerpo en movimiento una longitud más corta que la que tiene el cuerpo en reposo y la duración de los eventos que afecten al cuerpo en movimiento son más largos con respecto al mismo evento medido por un observador en el sistema de referencia del cuerpo en reposo.

En 1912, Wilhelm Wien, premio Nobel de Física de 1911, propuso a Lorentz y a Einstein para este galardón por la teoría de la relatividad, expresando

Aunque Lorentz debe ser considerado como el primero en encontrar la expresión matemática del principio de la relatividad, Einstein consiguió reducirlo desde un principio simple. Debemos pues considerar el mérito de los dos investigadores como comparable.

Wilhelm Wien[10]

Einstein no recibió el premio Nobel por la relatividad especial pues el comité, en principio, no otorgaba el premio a teorías puras. El Nobel no llegó hasta 1921, y fue por su trabajo sobre el efecto fotoeléctrico.[11]

Other Languages
беларуская (тарашкевіца)‎: Спэцыяльная тэорыя рэлятыўнасьці
کوردیی ناوەندی: ڕێژەیی تایبەت
فارسی: نسبیت خاص
Bahasa Indonesia: Relativitas khusus
Bahasa Melayu: Kerelatifan khas
srpskohrvatski / српскохрватски: Specijalna teorija relativnosti
Simple English: Special relativity
српски / srpski: Specijalna teorija relativnosti