Teoría de campos

En física, la teoría de campos describe el conjunto de principios y técnicas matemáticas que permiten estudiar la dinámica y distribución espacial de los campos físicos. Así por ejemplo la teoría de campos permite describir específicamente como cambia un campo físico con el tiempo por su interacción consigo mismo y con el entorno.

La teoría de campos fue desarrollada en el contexto de la mecánica clásica durante el siglo XIX para describir tanto al campo gravitatorio y el campo eléctrico como otras formas de materia continuas como son los fluidos. Actualmente la teoría cuántica de campos es un campo de investigación muy activo que trata sobre los constituyentes últimos y estructura de la materia.

Introducción

La variación en el espacio y la evolución temporal de formas de materia modelizables como campo físico se describe mediante una densidad lagrangiana. Por abuso de lenguaje, esta densidad lagrangiana también se llama "lagrangiano". Este "lagrangiano" es el análogo continuo del lagrangiano usado para describir la ecuación de movimiento de un sistema de partículas. Al igual que en el caso de partículas, además de describir la dinámica mediante un "lagrangiano" es posible en el caso de los campos describir su dinámica por medio de un "hamiltoniano".

El tratamiento clásico de los campos pasa por buscar ecuaciones diferenciales de evolución derivadas a partir del lagrangiano. Esto se hace introduciendo el lagrangiano en las llamadas ecuaciones de Euler-Lagrange. Por otro lado, el tratamiento cuántico de los campos involucra construir un hamiltoniano cuántico y un espacio de Hilbert adecuado, sobre el que se suele tratar el problema perturbativamente mediante diagramas de Feynman. Los resultados de ambas teorías resultan comparables si se examinan las secciones eficaces del scattering de partículas.

En Física Moderna, los campos más estudiados son los que nos dan las cuatro fuerzas fundamentales, para los cuales se han establecido la forma razonablemente exacta de sus respectivos "lagrangianos".

Historia

Representación matemática de un campo eléctrico como líneas que cruzan el espacio entre dos partículas cargadas eléctricamente.

Michael Faraday fue el primero en introducir el concepto de campo, durante sus investigaciones sobre magnetismo. Varios trabajos posteriores formalizaron matemáticamente la idea de campo. En teoría clásica de campos matemáticamente estos se tratan como una función que varía continuamente a lo largo del espacio y con el tiempo. Aunque inicialmente el concepto de campo se consideró sólo como un artificio matemático conveniente, varias evidencias llevaron a considerar el campo electromagnético y el campo gravitatorio no sólo como campos de fuerzas definidos matemáticamente, sino como entidades físicas reales, detectables y medibles a las que era posible asociarles energía. De hecho en la moderna física cuántica se considera que no existen partículas materiales sino simplemente campos materiales. Cuando un campo está muy concentrado en una región del espacio razonablemente bien definida aparece a escala macroscópica como una partícula.

La idea de los campos como entidades físicas reales y autónomas se hizo realmente notoria a partir de la formulación, por parte de James Clerk Maxwell, de la primera teoría unificada de campos en física. Maxwell reunió diversas leyes experimentales sobre los campos eléctricos y magnéticos, y las juntó en un sistema de ecuaciones diferenciales en derivadas parciales, añadiendo diversos términos por completitud teórica. Los nuevos términos postulados por Maxwell y la predicción de que los campos electromagnéticos en el vacío se propagan en formas de ondas electromagnéticas llevaron a la consideración del campo electromagnético como entidad física real, existente al margen de las cargas eléctricas que pueden estar asociadas a él. Las ecuaciones de la teoría de campo unificado formulada por Maxwell, se llaman ecuaciones de Maxwell. Al final del siglo XIX, el campo electromagnético fue comprendido como una colección de dos campos vectoriales en el espacio. Hoy en día, se lo puede reconocer como un solo campo tensorial antisimétrico de segundo orden en el espacio-tiempo.

La teoría de la gravitación de Einstein, llamada teoría general de la relatividad, es otro ejemplo de una teoría de campos. Aquí el principal campo es el tensor métrico, un campo tensorial simétrico de rango 2 en el espacio-tiempo.

Other Languages