Teoría de campo de gauge

Cromodinámica cuántica como teoría gauge, basada en el grupo SU(3). Cada tipo de quark (u o d en la imagen) posee tres «copias» de distinto «color». Los gluones actúan como bosón intermediario entre partículas con color (como un fotón entre partículas con carga eléctrica).

En física, una teoría de campo gauge (o teoría de gauge o teoría de "recalibración") es un tipo de teoría cuántica de campos que se basa en el hecho de que la interacción entre fermiones puede ser vista como el resultado de introducir transformaciones "locales" pertenecientes al grupo de simetría interna en el que se base la teoría gauge. Las teorías de gauge se discuten generalmente en el lenguaje matemático de la geometría diferencial e involucran el uso de transformaciones de gauge. Una transformación de gauge es una transformación de algún grado de libertad interno, que no modifica ninguna propiedad observable física.

Un campo gauge es un campo de Yang-Mills asociado a las transformaciones de gauge asociadas a la teoría y que describe la interacción física entre diferentes campos fermiónicos. Por ejemplo el campo electromagnético es un campo de gauge que describe el modo de interactuar de fermiones dotados con carga eléctrica.

Introducción

En física, las teorías extensamente aceptadas del modelo estándar son teorías de campo de gauge. Esto significa que los campos en el modelo estándar exhiben alguna simetría interna abstracta conocida como invariancia de gauge. La invariancia gauge significa que el lagrangiano que describe el campo es invariante bajo la acción de un grupo de Lie que se aplica sobre las componentes de los campos. Cuando se aplica la misma transformación a todos los puntos del espacio, se dice que la teoría tiene invariancia gauge global. Las teorías de gauge usan lagrangianos, tales que en cada punto del espacio es posible aplicar transformaciones o "rotaciones" ligeramente diferentes y aun así el lagrangiano es invariante, en ese caso se dice que el lagrangiano presenta también invariancia de gauge local. Es decir, un lagrangiano con simetría gauge local permite escoger ciertos grados de libertad internos de una manera en una región del espacio y de otra en otra región del espacio suficientemente alejada sin afectar a la primera región. La posibilidad de que un lagrangiano admita esta transformación más general puede ser visto como una versión generalizada del principio de equivalencia de la teoría de la relatividad general.

Desde el punto de vista físico, los campos de gauge se manifiestan físicamente en forma de partículas bosónicas sin masa (bosones gauge), por lo que se dice que todos los campos de gauge son mediados por el grupo de bosones de gauge sin masa de la teoría.

Formulación matemática

Para formular una teoría de campo gauge es necesario que la dinámica de los campos fermiónicos de la teoría venga descrita por un lagrangiano que tenga alguna simetría interna "local" dada por un grupo de Lie, llamado grupo de transformaciones de gauge. Así pues, al "rotar" algo en cierta región, no se determina cómo los objetos rotan en otras regiones (se usa el término "rotar" porque los grupos de gauge más frecuentes son SU(2) y SU(3) que son generalizaciones del grupo de rotaciones ordinarias). Físicamente una transformación de gauge es una transformación de algún grado de libertad que no modifica ninguna propiedad física observable. Las dos características formales que hacen de un campo un campo gauge son:

  1. Los campos gauge aparecen en el lagrangiano que rige la dinámica del campo en forma de conexión, por tanto, matemáticamente están asociadas a 1-formas que toman valores sobre una cierta álgebra de Lie.
  2. El campo de gauge puede ser visto como el resultado de aplicar a diferentes puntos del espacio diferentes transformaciones dentro del grupo de simetría asociado a los campos fermiónicos de la teoría.

Mecanismo de Higgs

Aunque en el modelo estándar todas las interacciones o fuerzas básicas exhiben algún tipo de simetría de gauge, esta simetría no es siempre obvia en los estados observados. A veces, especialmente cuando la temperatura disminuye, la simetría se rompe espontáneamente, es decir, ocurre el fenómeno conocido como ruptura espontánea de la simetría. Un ejemplo básico de la simetría rota que se da a menudo es una de estado sólido imán. Se compone de muchos átomos, cada uno de las cuales tiene un momento magnético dipolar. Sin embargo, las leyes del magnetismo son rotacionalmente simétricas, y es así que en las altas temperaturas, los átomos estarán alineados aleatoriamente, y la simetría rotatoria será restaurada. Semejantemente, se puede, con las condiciones apropiadas, enfriar agua bajo la temperatura de solidificación. Cuando un cristal de hielo se tira en el líquido, la simetría es rota y el agua solidifica inmediatamente.

Para dar cuenta de estos hechos de ruptura de la simetría, se ha propuesto el mecanismo de Higgs. Si en el lagrangiano de la interacción o "campo de fuerzas" concreto que está siendo estudiado se introducen cierto tipo de campos escalares que interactúan consigo mismo, en el límite de bajas energías los bosones gauge se comportan como si estuvieran dotados de masa; este efecto es precisamente el mecanismo de Higgs. En otras palabras el mecanismo de Higgs puede ser interpretado pensando que la interacción entre el campo escalar introducido o campo de Higgs y los bosones gauge, hace que estos "adquieran" masa, es decir, presenten interacciones como las que presentarían genuinas partículas con masa.

Other Languages
Deutsch: Eichtheorie
English: Gauge theory
Esperanto: Gaŭĝa teorio
Gaeilge: Tomhasteoiric
עברית: תורת כיול
Bahasa Indonesia: Teori ukuran (fisika)
italiano: Teoria di gauge
日本語: ゲージ理論
한국어: 게이지 이론
Nederlands: IJktheorie
norsk nynorsk: Justerteori
norsk bokmål: Gaugeteori
ਪੰਜਾਬੀ: ਗੇਜ ਥਿਊਰੀ
português: Teoria de gauge
slovenščina: Umeritvena teorija
svenska: Gaugeteori
Türkçe: Ayar kuramı
татарча/tatarça: Калибрлау теориясе
中文: 规范场论
粵語: 規範場論