Teoría de Einstein-Cartan

En 1922 Élie Cartan conjeturó que la relatividad general debe ser extendida incluyendo la torsión afín, que permite un tensor de Ricci asimétrico. La extensión de la geometría de Riemann para incluir torsión afín ahora se conoce como geometría de Riemann-Cartan. Una geometría de Riemann-Cartan se determina unívocamente por:

  1. una elección del campo tensorial métrico (que especifica todas las longitudes de los vectores y los ángulos entre los vectores),
  2. un campo de torsión afín, y
  3. el requisito de que las longitudes y los ángulos se preserven por traslación paralela (como en la geometría de Riemann donde la torsión es cero).

Una geometría de Riemann es una geometría de Riemann-Cartan con la torsión cero, así que es determinada unívocamente por un tensor métrico.

Como la teoría principal de la física clásica, la relatividad general tiene un defecto conocido: no puede describir adecuadamente el intercambio entre el momento angular intrínseco ( espín) y el momento angular orbital. El problema arraiga en los fundamentos de la relatividad general. La relatividad general se basa en la geometría de Riemann, en la cual el tensor de curvatura de Ricci Rij debe ser simétrico en i y j (es decir, Rij = Rji). En relatividad general, Rij modela las fuerzas gravitacionales locales, y su simetría forza al tensor de momento (usamos P y dejamos T para torsión): Pij a ser simétrico, de modo que la relatividad general no puede acomodar la ecuación general de la conservación del momento angular: divergencia de la corriente de espín ½(Pij - Pji) = 0.

Una interpretación geométrica de la torsión afín viene de la mecánica del continuo en materiales sólidos. La torsión afín es la aproximación continua a la densidad de dislocaciones que se estudian en metalurgia y cristalografía. Las clases más simples de dislocaciones en cristales reales son:

  • las dislocaciones de borde (formadas agregando un semiplano adicional de átomos a un cristal perfecto, así que se consigue un defecto en la estructura cristalina regular a lo largo de la línea donde el semiplano adicional termina), y
  • las dislocaciones de "tornillo" (formadas insertando "una rampa de garaje de estacionamiento" que amplía los bordes del garaje en una estructura, que de otra manera sería perfectamente apilada).

Se puede pensar en una geometría de Riemann-Cartan como unívocamente determinada por las longitudes y los ángulos de vectores y la densidad de dislocaciones en la estructura afín del espacio.

La relatividad general fijó la torsión afín en cero, porque no parecía necesaria para proporcionar un modelo de la gravitación (con un conjunto consistente de ecuaciones que condujo a un problema bien-definido del valor inicial).

La derivación de las ecuaciones de campo de la teoría de Einstein-Cartan

La relatividad general y la teoría de Einstein-Cartan ambas utilizan la curvatura escalar como lagrangiano. La relatividad general obtiene sus ecuaciones del campo variando la integral de acción (integral del lagrangiano sobre el espacio-timpo) con respecto al tensor métrico . El resultado son las famosas ecuaciones de Einstein:

donde

  • es el tensor de curvatura de Ricci (una contracción del tensor pleno de curvatura de Riemann que tiene cuatro índices: ) (se sigue la convención de Einstein: un índice repetido superior (indica contravariante) y un inferior (indica covariante) involucran una sumatoria sobre ese índice.)
  • es el tensor métrico (no degenerado, simétrico),
  • es la curvatura escalar:
  • es el tensor de energía-momento
  • es la Constante gravitatoria universal de Newton y es la velocidad de la luz.

La "segunda identidad de Bianchi contraída" de la geometría de Riemann se convierte, en relatividad general, en div(P)=0, que hace la conservación de la energía y del momento equivalente a una identidad de la geometría de Riemann.

Una pregunta básica en formular la teoría de Einstein-Cartan es qué variables en la acción deben variar para conseguir las ecuaciones del campo. Se puede variar el tensor métrico y el tensor de torsión, . Sin embargo, esto hace las ecuaciones de la teoría de Einstein-Cartan más sucias que lo necesario y disfraza el contenido geométrico de la teoría. La intuición clave es dejar que el grupo de simetría de la teoría de Einstein-Cartan sea el grupo no homogéneo de rotación (que incluye traslaciones en espacio y tiempo). La simetría rotatoria no homogénea está rota por el hecho de que el punto cero en cada fibra tangente sigue siendo un punto privilegiado, según lo es en la geometría ordinaria de Riemann basada en el grupo homogéneo de rotación. Variamos la acción con respecto a los coeficientes de la conexión afín asociados a las simetrías de translación y rotación. Un enfoque similar en relatividad general es llamado " variación de Palatini", en el cuál se varía la acción con respecto a los coeficientes rotatorios de la conexión en vez de la métrica; la relatividad general no tiene ningún coeficiente de translación en la conexión.

Las ecuaciones del campo resultantes de la teoría de Einstein-Cartan son:

donde

  • es el tensor de espín de toda la materia y radiación
  • es el tensor de torsión modificado:
  • es el tensor de torsión afín.

La primera ecuación es igual que en relatividad general, excepto que la torsión afín está incluida en todos los términos de la curvatura, así que no necesita ser simétrico.

La segunda identidad de Bianchi contraída de la geometría de Riemann-Cartan se convierte, en la teoría de Einstein-Cartan, en

  • div(P) = algunos términos muy pequeños que son productos de la curvatura y la torsión,
  • div(σ) = - parte antisimétrica de PLa conservación del momento es alterado por los productos de la fuerza del campo y de la densidad gravitacional de espín. Estos términos son extremadamente pequeños bajo condiciones normales, y parecen razonables puesto que el campo gravitacional en sí mismo lleva energía. La segunda ecuación es la conservación del momento angular, en una forma que acomoda el acoplamiento espín-órbita.
Other Languages