Superficie de revolución

Una superficie de revolución es aquella que se genera mediante la rotación de una curva plana, o generatriz, alrededor de una recta directriz, llamada eje de rotación, la cual se halla en el mismo plano que la curva. Ejemplos comunes de una superficie de revolución son:

Superficie de revolución.
  • Una superficie de revolución cilíndrica es generada por la rotación de una línea recta, paralela al eje de rotación, alrededor del mismo; esta superficie determina un volumen denominado cilindro, que se denomina sólido de revolución; la distancia entre el eje y la recta se denomina radio.
  • Una superficie de revolución cónica es generada por la rotación de una recta alrededor de un eje al cual interseca en un punto, llamado vértice o ápice, de forma que el ángulo bajo el que la generatriz corta al eje es constante; la superficie cónica delimita al volumen denominado cono.
  • Una superficie de revolución esférica está generada por la rotación de una semicircunferencia alrededor de su diámetro; ésta encierra al sólido de revolución llamado esfera.
  • Una superficie de revolución toroidal está generada por la rotación de una circunferencia alrededor de un eje que no la interseca en ningún punto; esta superficie se denomina toro.

Aplicaciones

La utilización de superficies de revolución es esencial en diversos campos de la física y la ingeniería, así como en el diseño, cuando se dibujan objetos digitalmente, sus superficies pueden ser calculadas de este modo sin necesidad de medir la longitud o el radio del objeto.

La alfarería, y el torneado industrial, moldean y modelan volúmenes con variadas superficies de revolución de gran utilidad y uso cotidiano.

Other Languages