Subespacio vectorial

En álgebra lineal, un subespacio vectorial es el subconjunto de un espacio vectorial, que satisface por sí mismo la definición de espacio vectorial con las mismas operaciones que V.

Definición de subespacio vectorial

Sea un espacio vectorial sobre y no vacío, es un subespacio vectorial de si:

Consecuencias

  • Un subespacio vectorial que cumple las dos condiciones anteriores es un espacio vectorial.
Demostración
i) permite el cumplimiento de la propiedad conmutativa y asociativa.

ii) permite el cumplimiento de la propiedad asociativa, elemento neutro y propiedad distributiva respecto las dos operaciones.

Luego para el elemento neutro de la suma éste se puede obtener como , que y lo mismo para el elemento opuesto de la suma obtenido como , ya que

Notaciones

Dado un subespacio vectorial, se tiene:

Para i) el abuso de lenguaje , e incluso es correcto.

Demostración
Se quiere ver que :

Para ii) el abuso de lenguaje , e incluso es correcto.

Demostración

Criterio de verificación

Es posible sintetizar i) y ii) en una condición única:

Si V es un espacio vectorial, entonces un subconjunto no vacío U de V es un subespacio vectorial si y sólo si para cualesquiera dos vectores v, w pertenecientes a U y cualesquiera escalares r y s pertenecientes al cuerpo asociado, el vector es también un elemento de U.

Other Languages