Srinivasa Aiyangar Ramanujan

Srinivasa Ramanujan
Srinivasa Ramanujan - OPC - 1.jpg
Srinivasa Aiyangar Ramanujan
Nacimiento 22 de diciembre de 1887
Erode, Tamil Nadu, Raj Británico
Fallecimiento 26 de abril de 1920 (32 años)
Chetput, ( Madrás), Tamil Nadu, Raj Británico
Residencia British Raj Red Ensign.svg Raj Británico (hoy Flag of India.svg  India)
Bandera de Reino Unido  Reino Unido
Nacionalidad British Raj Red Ensign.svg indio
Campo Matemáticas
Alma máter Universidad de Cambridge
Supervisores
doctorales
G. H. Hardy
J. E. Littlewood
Conocido por Suma de Ramanujan
Constante de Landau-Ramanujan
Constante de Ramanujan-Soldner
Identidad de Rogers-Ramanujan
Sociedades Royal Society de Londres
Creencias religiosas Hindú

Srinivasa Ramanujan signature.gif
Firma de Srinivasa Aiyangar Ramanujan

[ editar datos en Wikidata]

Srinivāsa Aiyangār Rāmānujan ( Acerca de este sonido  /ʃriːnivɑːsə rɑːmɑːnʊdʒən/ en tamil, ஸ்ரீனிவாஸ ஐயங்கார் ராமானுஜன், transliterado: Srinivasa Ramanujan Iyengar o simplemente como Ramanujan Erode, 22 de diciembre de 1887 - Kumbakonam, 26 de abril de 1920) fue un matemático autodidacta indio que, con una mínima educación académica en matemáticas puras, hizo contribuciones extraordinarias al análisis matemático, la teoría de números, las series y las fracciones continuas. Ramanujan desarrolló inicialmente su propia investigación matemática en forma aislada; que fue rápidamente reconocida por los matemáticos indios. Cuando sus habilidades se hicieron evidentes a una comunidad matemática más amplia, centrada en Europa en ese momento, comenzó su famosa colaboración con el matemático británico G. H. Hardy. Redescubrió teoremas conocidos previamente, además de producir numerosos nuevos teoremas.

Durante su corta vida, Ramanujan fue capaz de compilar independiente casi 3.900 resultados (en su mayoría identidades y ecuaciones).[3]

Biografía

Primeros años

Casa de Ramanujan. Sarangapani Street, Kumbakonam

Ramanujan nació el 22 de diciembre de 1887 en Erode, en la provincia de Madrás, (por entonces perteneciente al Imperio Británico), en la residencia de sus abuelos maternos. Descendiente de una familia de brahmanes,[7] Se trasladó con su madre a la casa de sus abuelos maternos en Kanchipuram, cerca de Madrás (ahora Chennai). En noviembre de 1891, y nuevamente en 1894, su madre dio a luz a otros dos hijos, que murieron en la infancia.

El 1 de octubre de 1892, Ramanujan se matriculó en la escuela local.[10]

Dado que el padre de Ramanujan se pasaba en su trabajo la mayor parte del día, fue su madre quien cuidó de él casi en exclusiva cuando era niño. La relación entre ambos fue muy estrecha. Ella fue la que le instruyó en la tradición y en las puranas (literatura tradicional hinduista). Aprendió a cantar canciones religiosas, para asistir a las pujas en el templo, y a mantener determinados hábitos alimenticios propios de la cultura de los brahmanes.[12]

Con 11 años, Ramanujan había agotado el conocimiento matemático de dos estudiantes universitarios que eran inquilinos en su casa. Fue más tarde cuando le prestaron un libro de trigonometría avanzada escrito por S. L. Loney.[15] Completaba los exámenes matemáticos en la mitad del tiempo asignado, y mostró una sorprendente familiaridad con la geometría y con las series infinitas. Ramanujan fue instruido en cómo resolver ecuaciones cúbicas en 1902 y a continuación encontró su propio método para resolver las de cuarto grado. Al año siguiente, sin saber que la ecuación de quinto grado no podía ser resuelta por radicales como había demostrado Évariste Galois setenta años antes, trató de resolverla por su cuenta.

En 1903, cuando tenía 16 años, Ramanujan obtuvo de un amigo una copia de un libro de G. S. Carr prestado en una biblioteca.[15]

Cuando se graduó en la escuela secundaria en 1904, Ramanujan fue galardonado con el premio de matemáticas K. Ranganatha Rao por el director de la escuela, Krishnaswami Iyer. Iyer distinguió a Ramanujan como un estudiante sobresaliente que merecía una puntuación más alta que la máxima nota posible.[25]

Edad adulta en la India

El 14 de julio de 1909, Ramanujan se casó con una novia de diez años de edad, Srimathi Janaki (Janakiammal), (21 de marzo de 1899 - 13 de abril de 1994)[28]

Después de la unión, Ramanujan desarrolló un hidrocele testis, una hinchazón anormal de la membrana interna de los testículos.[30]

Después de su cirugía exitosa, Ramanujan buscó un empleo. Se quedó en casa de sus amigos mientras iba de puerta en puerta en torno a la ciudad de Madrás (actualmente Chennai) en busca de un trabajo de oficina. Para conseguir algo de dinero, fue tutor de algunos estudiantes de la Universidad de la Presidencia que se preparaban para su examen de First Arts.[31]

A finales de 1910, Ramanujan estaba enfermo de nuevo, posiblemente como resultado de la cirugía que se le practicó a principios de año. Temía por su salud, e incluso le llegó a encargar a su amigo, R. Radakrishna Iyer, que "se entregasen [los cuadernos matemáticas de Ramanujan] al profesor Singaravelu Mudaliar [profesor de matemáticas en el Colegio de Pachaiyappa] o al profesor británico Edward B. Ross, del Madras Christian College"."[34]

Atención hacia las matemáticas

Ramanujan conoció al alto funcionario V. Ramaswamy Aiyer, que había fundado recientemente la Sociedad Matemática de la India.[35] Deseando conseguir un trabajo en el departamento de recaudación, donde Ramaswamy Aiyer trabajaba, le mostró sus cuadernos de matemáticas. Como Ramaswamy Aiyer recordó más tarde:

Me llamaron la atención los extraordinarios resultados matemáticos contenidos en ellos [los cuadernos]. Yo no tenía en mente ahogar su genio con un puesto en los peldaños más bajos del departamento de recaudación.[36]

Ramaswamy Aiyer envió cartas de presentación de Ramanujan a sus amigos matemáticos en Madrás.[41]

Uno de los primeros problemas planteados en la revista fue:

Esperó a que llegase una solución durante tres ediciones de la revista, más de seis meses, pero no recibió ninguna. Al final, Ramanujan facilitó la solución al problema. En la página 105 de su primer cuaderno, formuló una ecuación que se podía utilizar para resolver el problema de la sucesión infinita de radicales anidados:

Utilizando esta ecuación, la respuesta a la pregunta planteada en el Diario era simplemente 3.[42]

Ramanujan escribió su primer documento formal para el Diario sobre las propiedades de los números de Bernoulli. Una propiedad que descubrió fue que los denominadores (sucesión A027642 en OEIS) de las fracciones de números de Bernoulli eran siempre divisibles por seis. También ideó un método de cálculo Bn sobre la base de los números de Bernoulli anteriores. Uno de estos métodos era el siguiente:

Se observa que si n es par pero distinto de cero, entonces
(i) Bn es una fracción de Bernoulli y el numerador de en sus términos más bajos es un número primo,
(ii) el denominador de Bn contiene cada uno de los factores 2 y 3 una vez y sólo una vez,
(iii) es un entero y consecuentemente es un 'entero impar'.

En su documento de 17 páginas, "Algunas propiedades de los números de Bernoulli", Ramanujan formuló tres pruebas, dos corolarios y tres conjeturas.[43] Ramanujan al principio redactaba sus artículos con bastantes carencias. Como el editor del 'Diario' MT Narayana Iyengar señaló:

Los métodos del señor Ramanujan eran tan escuetos y los textos y su presentación tan faltos de claridad y precisión, que de ordinario [un lector de matemática], poco acostumbrado a este tipo de gimnasia intelectual, apenas podía seguirle.[44]

Ramanujan escribió más tarde otro artículo y también siguió publicando problemas en el Diario.[46] solicitando entonces un puesto a las órdenes del Jefe de Contabilidad del Trust del Puerto de Madrás. En una carta de fecha 9 de febrero de 1912, Ramanujan escribió:

Sir,
Entiendo que hay una pasantía vacante en su oficina, y le ruego que considere mi solicitud. Tengo aprobado el examen de ingreso y los estudios del First Arts, pero no he podido proseguir mis estudios debido a varias circunstancias adversas. He estado, sin embargo, dedicando todo mi tiempo a las matemáticas y a su desarrollo. Puedo decir que estoy bastante seguro de que puedo hacer justicia a mi trabajo si soy nombrado para el puesto. Me permito confiar en que va a ser lo suficientemente bondadoso como para conferirme el nombramiento.[47]

Se adjunta a su solicitud una recomendación de E. W. Middlemast, profesor de matemáticas en el Colegio Presidencial de Chennai, quien escribió que Ramanujan era "un joven de capacidad excepcional en Matemáticas".[49] En su oficina, Ramanujan completaba su trabajo fácil y rápidamente, por lo que podía pasar el tiempo restante haciendo investigación matemática. El jefe de Ramanujan, Sir Francis Spring, y S. Narayana Iyer, su colega que también era el tesorero de la Sociedad Matemática de la India, animaron a Ramanujan en sus actividades matemáticas.

Contacto con matemáticos británicos

En la primavera de 1913, Narayana Iyer, Ramachandra Rao y E. W. Middlemast trataron de presentar el trabajo de Ramanujan a los matemáticos británicos. Un matemático, M. J. M. Hill del University College de Londres, comentó que los trabajos de Ramanujan "estaban llenos de agujeros",[52]

Los dos primeros profesores, H. F. Baker y E. W. Hobson, devolvieron los escritos de Ramanujan sin comentarios.[55] Uno de estos teoremas que Hardy encontró casi imposibles de creer estaba en la parte inferior de la página tres (válido para 0  < a < b + 1/2):

Hardy también quedó impresionado por algunos de los trabajos de Ramanujan en relación con las series infinitas:

El primer resultado ya había sido determinado por un matemático llamado Bauer. El segundo era nuevo para Hardy, y se deriva de una clase de funciones llamadas series hipergeométricas que primero habían sido investigadas por Leonhard Euler y Carl Friedrich Gauss. En comparación con el trabajo de Ramanujan en integrales, Hardy encontró estos resultados "mucho más intrigantes".[59]

El 8 de febrero de 1913, Hardy escribió una carta a Ramanujan, expresando su interés por su trabajo. Hardy también añadió que era "esencial que yo vea pruebas de algunas de sus afirmaciones".[63]

Para complementar el respaldo de Hardy, un ex profesor de matemáticas en el Trinity College de Cambridge, Gilbert Walker, pudo ver el trabajo de Ramanujan y expresó su asombro, instándolo a pasar un tiempo en Cambridge.[68]

La correspondencia de Hardy con Ramanujan se agrió después de que Ramanujan se negó a viajar a Inglaterra. Hardy encargó a un colega que estaba dando conferencias en Madrás, E.H. Neville, que convenciese a Ramanujan para ir a Inglaterra.[59] Ramanujan se embarcó por fin hacia Inglaterra, dejando a su esposa con sus padres en la India.

Estancia en Inglaterra

Ramanujan (centro) con otros científicos en el Trinity College
Whewell's Court, Trinity College, Cambridge

Ramanujan embarcó en el SS Nevasa el 17 de marzo de 1914. A las 10 de la mañana, el barco partió de Madrás.[74]

Ramanujan pasó casi cinco años en Cambridge colaborando con Hardy y Littlewood, y publicó una parte de sus hallazgos allí. Hardy y Ramanujan tenían personalidades totalmente contrapuestas. Su colaboración fue un choque de diferentes culturas, creencias y estilos de trabajo. Hardy era ateo y un apóstol de la prueba y el rigor matemático, mientras que Ramanujan era un hombre profundamente religioso y se apoyaba fuertemente en su intuición. Mientras que Ramanujan permaneció en Inglaterra, Hardy hizo todo lo posible para llenar las lagunas en la educación de su colega sin interrumpir su hechizo de inspiración.

Ramanujan fue galardonado con una licenciatura en Ciencias (este grado fue más tarde renombrado PhD) en marzo de 1916 por su trabajo de investigación en números altamente compuestos, la primera parte de la cual fue publicada como un documento en las Actas de la London Mathematical Society. El artículo tenía más de 50 páginas con la demostración de diferentes propiedades de tales números. Hardy comentó que este fue uno de los artículos más inusuales surgidos en la investigación matemática de esa época y que Ramanujan mostró un extraordinario ingenio en su manejo.[ cita requerida] El 6 de diciembre de 1917, fue elegido miembro de la Sociedad Matemática de Londres. Fue nombrado Miembro de la Royal Society en 1918, convirtiéndose en el segundo indio en conseguirlo, tras Ardaseer Cursetjee en 1841, a los 31 años, siendo uno de los estudiosos más jóvenes en la historia de la Royal Society. Resultó elegido "por su investigación en Funciones Elípticas y en la Teoría de Números." El 13 de octubre de 1918, se convirtió en el primer indio elegido Miembro del Trinity College.[75]

Enfermedad y muerte

Plagado de problemas de salud durante toda su vida, viviendo en un país lejos de su hogar y obsesivamente involucrado con sus matemáticas, la salud de Ramanujan empeoró en Inglaterra, tal vez exacerbada por el estrés y por la escasez de su dieta vegetariana durante la Primera Guerra Mundial. Fue diagnosticado de tuberculosis y de una deficiencia vitamínica grave, y fue internado en un sanatorio.

Ramanujan volvió a Kumbakonam en 1919 y murió poco después a la edad de 32 años en 1920. Su viuda, S. Janaki Ammal, se trasladó a Bombay, pero volvió a Chennai (antes Madrás) en 1950, donde vivió hasta su muerte a los 95 años en 1994.[28]

Un análisis de la historia clínica de Ramanujan y sus síntomas elaborado en 1994 por el doctor D.A.B Young llegó a la conclusión de que era mucho más probable que tuviese amebiasis hepática, una infección parasitaria del hígado generalizada en Madrás, donde Ramanujan había pasado gran parte de su vida. Tuvo dos episodios de disentería antes de abandonar la India. Cuando no se trata adecuadamente, la disentería puede permanecer latente por años y dar lugar a la amebiasis hepática,[76] una enfermedad difícil de diagnosticar, pero fácilmente curable una vez que se diagnostica.

Other Languages
azərbaycanca: Srinivasa Ramanucan
বিষ্ণুপ্রিয়া মণিপুরী: শ্রীনিবাস রামানুজন
Deutsch: S. Ramanujan
Kreyòl ayisyen: Srinivasa Ramanujan
Bahasa Indonesia: Srinivasa Ramanujan
norsk nynorsk: Srinivasa Ramanujan
Kapampangan: Srinivasa Ramanujan
srpskohrvatski / српскохрватски: Srinivasa Ramanudžan
Simple English: Srinivasa Ramanujan
Tiếng Việt: Srinivasa Ramanujan