Splicing de ARN

El splicing de ARN, empalme de ARN o ayuste de ARN (del inglés RNA splicing, en donde splice significa en inglés empalmar o unir, ayuste es un término marinero que se refiere al empalme de dos cabos o piezas de madera) es un proceso post-transcripcional de maduración del ARN del cual eliminan ciertos fragmentos secuenciales. Este proceso es muy común en eucariotas, pudiéndose dar en cualquier tipo de ARN aunque es más común en el ARNm. También se ha descrito en el ARNr y ARNt de procariotas y bacteriófagos. Normalmente consiste en eliminar los intrones del transcrito primario y posteriormente unir los exones; aunque existen otros tipos de ajuste donde se eliminan intrones y/o retienen exones (véase splicing alternativo).

Ilustración del proceso de splicing desde pre-ARN a ARN.

Rutas de splicing

En la naturaleza existen diversos métodos de splicing del ARN. El mecanismo de splicing depende de la estructura del fragmento de ARN que pasará por este proceso. Las modificaciones que se dan durante éste son:

Espliceosoma

El Espliceosoma es un complejo formado por cinco ribonucleoproteínas nucleares pequeñas o snRNP (complejo formado por unas diez proteínas más una pequeña molécula de ARN). El ARN de los snRNP es el encargado de reconocer el intrón. Se han identificado dos tipos de spliceosomas, el mayor y el menor[ cita requerida], cada uno de los cuales contiene diferentes tipos de snRNP.

Espliceosoma mayor

Está formado por los snRNP U1, U2, U4, U5 y U6. Reconoce la secuencia consenso GU (Guanina-Uracilo) del extremo 5’ del intrón así como la secuencia consenso AG del extremo 3’. El 99% de los intrones lo hacen a través de este mecanismo.

  • Complejo E: U1 se une a la secuencia consenso GU del extremo 5’ del sitio de corte del intrón, junto con las proteínas accesorias ASF/SF2, U2AF, SF1/BBP.
  • Complejo A: U2 se une al sitio de ramificación e hidroliza ATP. El sitio de ramificación se sitúa a una distancia de 20-40 nucleótidos del extremo 3’ del intrón y en él se localiza la secuencia consenso CURAY.
  • Complejo B1: U5, U4 y U6 trimerizan, y U5 se une al exón 5’ y U6 a U2.
  • Complejo B2 – U1 es liberado, U5 pasa del exón al intrón y U6 se une al extremo 5’ del sitio de corte.
  • Complejo C1: U4 es liberado, U5 se une al sitio de empalme del extremo 3’ del exón, U6 y U2 catalizan la reacción de transesterificación y el extremo 5’ del intrón es cortado; como resultado se forma una estructura en lazo característica denominada lariat.
  • Complejo C2: el extremo 3’ del intrón es cortado lo que provoca la liberación del lazo de ARN. A continuación los exones son ligados, lo que conlleva gasto de ATP. Por último, el complejo se disocia.
Espliceosoma menor

Es similar al Espliceosoma mayor aunque los intrones eliminados mediante este mecanismo son escasos, y además presentan diferencias en los sitios de corte y empalme. También se diferencian en las secuencias consenso reconocidas, que en este caso son AU y AC para los extremos 3’ y 5’, respectivamente. Además, salvo la partícula snRNP U5, el resto son análogos funcionales denominadas U11 (análogo funcional de la U1), U12 (U2), U4atac (U4) y U6atac(U6).

Splicing en trans

También se puede denominar transempalme o empalme en trans. Consiste en el empalme de exones de dos transcritos primarios distintos, con la consiguiente formación de un ARN híbrido.

Other Languages