Sistema de determinación del sexo

Un sistema de determinación del sexo es un sistema biológico que determina el desarrollo de las características sexuales de un organismo. Se distinguen, generalmente, cuatro tipos de sistemas de determinación del sexo:

  • Determinación genética del sexo (GSD): aquella que está determinada por factores contenidos en los cromosomas.
    • Determinación cromosómica: cuando existen cromosomas heteromórficos
    • Determinación génica: cuando los cromosomas son homomórficos
    • Determinación por haplodiploidía: cuando uno de los sexos posee la mitad de la dotación cromosómica del otro sexo
  • Determinación ambiental del sexo (ESD): aquella que está determinada por factores ambientales
    • Determinación por temperatura (TSD): establecido por la temperatura de incubación

Determinación genética del sexo (GSD)

Está determinada por factores contenidos dentro de los cromosomas.

Determinación cromosómica del sexo

tipos de determinación cromosómica del sexo

Se presenta en especies cuyos cromosomas sexuales son heteromórficos (se diferencian morfológicamente) del resto, estos cromosomas portan los genes relacionados con carácter sexual y los caracteres ligados al sexo. Las especies con este tipo de sistema de determinación sexual poseen uno de los sexos heterogamético.

Se distinguen cuatro sistemas heterogaméticos:

Sistema XX/XY. Es el sistema de determinación de la especie humana y del resto de mamíferos, equinodermos, moluscos y algunos artrópodos. El organismo es diploide y posee un par de cromosomas que pueden ser del tipo X o del tipo Y. Los cromosomas X son cromosomas que siempre están presente en el sistema, mientras que los cromosomas Y tienen un segmento homólogo (una cromátida normal que se puede aparear con el cromosoma X) y un segmento diferencial que es más corto. En este sistema las hembras poseen un cariotipo homocigótico, es decir XX, mientras que el macho es cariotipo XY. El gameto femenino siempre porta un cromosoma X, mientras que el masculino puede aportar un cromosoma X o uno Y, por lo que se dice que el macho aporta el sexo del organismo.

En mamíferos placentados existe una determinación del sexo primaria y secundaria. La determinación sexual primaria es la determinación de las gónadas, la cual es estrictamente cromosómica y, en general, no es influenciada por el ambiente. Como la hembra es XX cada uno de sus gametos tiene un solo cromosoma X mientras que el macho, al ser XY puede generar dos tipos de espermatozoides: la mitad llevara un cromosoma X y la otra mitad un cromosoma Y. De esta forma si el gameto femenino recibe otro cromosoma X del espermatozoide, el individuo resultante será XX y si el gameto femenino recibe un cromosoma Y del espermatozoide, el individuo será XY.(Gilbert, 2005)

El cromosoma Y lleva un gen que codifica un factor determinante testicular, este factor se encarga de organizar la gónada hacia testículo en lugar de ovario. La formación de ovarios y testículos son procesos dirigidos por la expresión diferencial de genes desde un precursor común, la gónada bipotencial. (Gilbert, 2005)

La determinación sexual secundaria afecta el fenotipo fuera de las gónadas. Esto incluye el sistema de conductos masculino y femenino y a los genitales externos. Un macho mamífero tiene pene, vesículas seminales y glándula prostática mientras que la hembra de mamíferos tiene vagina, cuello uterino, útero, trompas de Falopio y glándulas mamarias. Estas características sexuales secundarias son, en general, determinadas por hormonas secretadas desde las gónadas. En algunos experimentos se ha observado que cuando se extirpan las gónadas fetales antes de haberse diferenciado, los individuos resultantes desarrollan un fenotipo femenino sin importar si era XX o XY.

Si está ausente el cromosoma Y, el primordio de la gónada se desarrolla hacia ovario, los ovarios empezarán a producir estrógeno, una hormona que permite el desarrollo de los conductos de Müller hacia útero, trompas de Falopio y extremo superior de la vagina. Pero si el cromosoma Y está presente, se forman testículos y estos secretan dos hormonas, la primera hormona, es la hormona inhibidora de los conductos de Müller (AMH) que provoca la regresión de los conductos, la segunda hormona es la testosterona que masculiniza el feto y estimula la formación del pene, del sistema de conductos masculino y del escroto, de la misma forma inhibe el desarrollo de los primordios de las glándulas mamarias. Por lo tanto, el cuerpo tiene un fenotipo femenino a menos que éste sea cambiado por las hormonas secretadas por los testículos fetales.

Desarrollo desde la gónada bipotencial.

Se conoce el efecto de genes necesarios para la diferenciación sexual normal como el gen SRY, encargado de codificar el principal factor determinante testicular. Pero este gen necesario para la diferenciación masculina no es suficiente para inducir el desarrollo de testículos en mamíferos,

SOX9:Un gen determinante testicular autosómico

Sox9 es otra proteína que al igual que SRY se une a una caja HMG (grupo de alta movilidad; del inglés, high-mability group). Sox9 es un gen autosómico que también puede inducir la formación testicular, los humanos XX que tienen una copia extra de Sox9 se desarrollan como masculinos, incluso si no tienen gen SRY y los ratones transgénicos para Sox9 desarrollan testículos. Los individuos que tienen solamente una copia funcional de este gen tienen un síndrome denominado displasia campomélica, una enfermedad que involucra a numerosos huesos esqueléticos y sistemas de órganos.Cerca del 75% de los paciente XY con este síndrome se desarrollan como fenotipos femeninos o hermafroditas. Es por esta razón que parece que Sox9 puede remplazar de SRY en la formación testicular. Esto no es completamente sorprendente ya que mientras que SRY es hallado específicamente en mamíferos, SOX9 es hallado en todos los vertebrados. Entonces Sox9 puede ser el gen de determinación del sexo más antiguo y más central, y en mamíferos puede ser activado por su pariente SRY, es decir que SRY puede estar actuando simplemente "interruptor" para activar a Sox9, y así Sox9 puede iniciar la vía evolutiva conservada para la formación testicular. Sox9 migra hacia el núcleo en el momento de la determinación sexual. Allí se une a un sitio promotor sobre el gen para el factoR inhibidor de Müller, proporcionando un enlace crítico en la vía hacia un fenotipo masculino. (Gilbert, 2005)

Capacidad de Sox9 para generar testículos.

Sistema XX/XO. Determinación propia de algunos insectos. Las hembras, según este sistema, poseen cariotipo XX, mientras que los machos poseen un solo cromosoma X. Este sistema supone que el macho tenga un cromosoma menos que la hembra. Igual que en el caso anterior es el macho quien determina el sexo, ya que puede producir gametos con cromosoma X o gametos que sólo contengan autosomas.

Algunas veces se encuentran entre los mamíferos hembras de constitución XO. Esto aparece en el ratón, Mus musculus, donde la constitución X0 origina hembras fértiles y normales.

Sistema X0/XY Se da en el ratón campestre, Microtus oregoni donde las hembras son 2n=17,X0 y los machos 2n=18, XY. Para que el sistema sea estable y no se generen gametos 0Y (inviables) ocurre de forma programada una no disyunción mitótica del cromosoma X en los primordios de las células germinales.

El sexo heterogamético es el masculino ya que produce dos clases de espermatozoides, que al fecundar a la única clase de óvulos producen individuos normales.

Sistema ZZ/Z0. Este sistema determina el sexo de algunos insectos. Sigue el mismo patrón que el sistema anterior, solo que en este caso el macho es homocigótico ZZ, mientras que la hembra es la que carece de un cromosoma y determina el sexo.

Sistema ZZ/ZW. Es un sistema propio de las aves, de las mariposas y de algunos peces. Sigue el mismo patrón que el sistema humano, pero los machos son homocigóticos ZZ, y las hembras heterocigóticas ZW. Se utilizan las letras Z y W para distinguirse del sistema XX/XY. El cromosoma Z sería el correspondiente con el X, siendo al igual que éste un cromosoma de mayor tamaño que su homólogo, y posee mayor cantidad de eucromatina. Mientras que el W sería el correspondiente al Y, y lo mismo que éste posee menor tamaño que el Z y está constituido en su mayoría por heterocromatina.

Sistemas complejos o compuestos. Estos sistemas de determinación del sexo consisten en que no hay un sólo tipo de cromosoma X y otro de Y, sino que hay varios tipos de cromosomas X (X1, X2, X3,...) y de Y (Y1,Y2,Y3,...).

Sistema hembra X1 X1 X2 X2- macho X1X2Y: Se piensa que estos sistemas complejos provienen de otros más sencillos como XX-XY o XX-X0, que a partir de reordenaciones cromosómicas se han formado diferentes tipos de cromosomas X, en concreto el X1 y X2. Este sistema lo presentan algunas especies de marsupiales como los canguros.

Mosaicismo. Hay individuos que pueden tener diferentes líneas celulares, cada una de ella con un tipo de composición cromosómica distinta. Para el caso de cromosomas sexuales se llama mosaico sexual. Algunos de esos mosaicos pueden ser: XX/X0 ( es decir un mismo individuo que posee parte de sus células con un único X y otra parte con dos X). Otro ejemplo sería: X0/XX/XXX.

Determinación génica del sexo

Se presenta en especies cuyos cromosomas sexuales son hemomórficos (no se diferencian morfológicamente) del resto. En este sistema el sexo viene determinado no por un cromosoma, sino por un gen y en algunos casos por varios. Este gen corresponde a una serie alélica en la cual la característica masculina es dominante frente al hermafroditismo, y esta es dominante frente a la femenina.

m=>masculinidad. Genotipos masculinos: mm, mh, mf
h=>hermafroditismo. Genotipos hermafroditas: hh, hf
f=>femineidad. Genotipo femenino: ff

Este sistema corresponde a algunas plantas. El caso más estudiado es el del pepinillo del diablo ( Ecballium elaterium)

Determinación del sexo por haplodiploidía

Es característico de insectos sociales como las hormigas, las abejas o las termitas. Viene dado por el número de dotaciones cromosómicas. Los individuos machos son haploides, mientras que las hembras son diploides.

El organismo reina (estos insectos se forman en sociedad matriarcal) tiene dotación diploide y posee óvulos que pueden ser fecundados por machos, con lo que se formarán nuevas hembras diploides (donde se elegirá una como sucesora de la reina, única hembra fértil de la sociedad) o pueden no ser fecundados y desarrollarse por partenogénesis con lo que se originarán machos haploides.

Esta determinación consiste en que hay gametos haploides (n) de la hembra que se fecundan y se forman individuos diploides (2n) que se desarrollan como hembra, mientras que los no fecundados darían lugar a machos.

Existen varias propuestas de como tendría lugar esa determinación:

Modelo de locus multialélico. En este caso existiría un gen con varios alelos que estaría implicado en la determinación sexual. Serían hembras todos los individuos heterocigotos para cualquiera de las combinaciones alélicas, mientras que los hemicigotos u homocigotos recesivos serían machos, siendo los homocigotos, machos estériles. Este modelo no se llega a ajustar a todas las especies por lo que hay otros.

Modelo de varios loci multialélicos. En este modelo habría que tener en cuenta varios genes. Y se considera que los individuos diploides heterocigotos para al menos uno de estos genes serían hembras. Mientras que los hemicigotos(n) o bien homocigotos (2n) para todos los genes serían machos. Siendo como en el modelo anterior los hemocigotos estériles.

Modelo de la impronta del locus sexual. En este modelo se habla de un locus S, que es el encargado de la determinación del sexo y que cuando está activo tiene capacidad de unirse a una proteína. Esa unión da lugar a la inducción del desarrollo de hembras. Mientras que cuando no tiene lugar esa asociación el desarrollo del individuo es hacia macho.

En concreto este sistema tiene lugar porque la hembra durante la ovogénesis impronta el locus S y lo trasmite inactivo, al contrario que los machos.

Modelo del efecto materno. Según este modelo el sexo estaría determinado por un equilibrio entre factores citoplasmáticos y factores nucleares. Se incluye dentro de la determinación del sexo por haplodiploidía porque se propone la existencia de un factor citoplasmático capaz de inducir la formación de macho solamente en un genoma haploide, y no en uno diploide.

Other Languages