Sincrotrón

Esquema de un sincrotrón

El sincrotrón es un tipo de acelerador de partículas. Se diferencia de otros aceleradores en que las partículas se mantienen en una órbita cerrada. Los primeros sincrotrones se derivaron del ciclotrón, que usa un campo magnético constante para curvar la trayectoria de las partículas, aceleradas mediante un campo eléctrico también constante, mientras que en el sincrotrón ambos campos varían. La velocidad máxima a la que las partículas se pueden acelerar está dada por el punto en que la radiación sincrotrón emitida por las partículas al girar es igual a la energía suministrada. Los sincrotrones también se utilizan para mantener las partículas circulando a una energía fija; en este caso reciben el nombre de «anillos de almacenamiento».

Los sincrotrones pueden usarse como colisionadores de partículas. En este tipo de sincrotrones, dos haces de partículas diferentes se aceleran en direcciones opuestas para estudiar los productos de su colisión. En otros sincrotrones se mantiene un haz de partículas de un solo tipo circulando indefinidamente a una energía fija, usándose como fuentes de luz sincrotrón para estudiar materiales a resolución del orden del radio atómico, en medicina y en procesos de manufactura y caracterización de materiales. Un tercer uso de los sincrotrones es como pre-acelerador de las partículas antes de su inyección en un anillo de almacenamiento. Estos sincrotrones se conocen como boosters («aceleradores»).

Desarrollo

Esquema de funcionamiento de un ciclotrón, el precursor del sincrotrón. El campo magnético es uniforme y se aplica en la dirección perpendicular a la órbita de las partículas. Las partículas se aceleran desde cero cada vez que atraviesan el campo magnético y describen una espiral cuyo radio aumenta hasta que emergen del acelerador.

El ciclotrón, concebido por el físico austro-húngaro Leó Szilárd en 1929, se puede considerar el precursor del sincrotrón. El ciclotrón usa un campo magnético estático para curvar la trayectoria de las partículas y un campo eléctrico oscilante de frecuencia fija para acelerarlas en un punto de su trayectoria. A medida de que las partículas aumentan su velocidad, el radio de su órbita aumenta, por lo cual describen una espiral.[3]

En 1934, Szilárd describió el principio de estabilidad de fase,[6] El Phasotron, un sincrociclotrón para electrones construido por Veksler en Dubná alcanzó los 10 GeV.

Ilustración del principio de estabilidad de fase en el sincrotrón: la función periódica U(t) representa el campo eléctrico oscilatorio. Los tres puntos sobre la gráfica representan tres partículas viajando a velocidades ligeramente distintas. La partícula del centro alcanza el campo con la fase «óptima» W0, entre 90 y 180°. La partícula que llega ligeramente por delante recibe menos energía del campo, y la que llega por detrás, más, de tal modo que las fases permanecen concentradas alrededor de W0.

La máxima energía de los sincrociclotrones está dictada por el radio máximo de la órbita de las partículas, que no podían acelerarse más una vez alcanzado este

punto. En 1949, MacMillan construyó el primer sincrotrón de electrones, incrementando la magnitud del campo magnético en sincronía con la velocidad del los electrones y consiguiendo así mantener a estos en una órbita fija cerrada y acelerarlos hasta una energía de 300 MeV.[12]

Bob Wilson, un antiguo colaborador de Lawrence, propuso separar los imanes focalizadores del haz de los imanes usados para curvar la trayectoria del haz de partículas en el sincrotrón de Fermilab, finalizado en 1972, donde se alcanzaron 400 GeV.[4] En las décadas siguientes se siguieron construyendo sincrotrones de mayor tamaño y energía, como el Tevatron en Fermilab o el LHC en CERN, dedicados al estudio de partículas subatómicas.

Aunque la radiación sincrotrón emitida por las partículas aceleradas constituye una limitación a la máxima energía alcanzable en un sincrotrón, los científicos pronto se percataron de las posibilidades que ofrecían los haces intensos de radiación ultravioleta y rayos X generados en los sincrotrones de altas energías,y en los 80, aparecieron los primeros anillos de almacenamiento diseñados exclusivamente como fuentes de radiación sincrotrón.[16]

Other Languages
català: Sincrotró
čeština: Synchrotron
Deutsch: Synchrotron
English: Synchrotron
euskara: Sinkrotroi
فارسی: سنکروترون
français: Synchrotron
Gaeilge: Sincreatrón
magyar: Szinkrotron
Bahasa Indonesia: Sinkrotron
italiano: Sincrotrone
한국어: 싱크로트론
lietuvių: Sinchrotronas
Nederlands: Synchrotron
norsk nynorsk: Synkrotron
polski: Synchrotron
português: Síncrotron
română: Sincrotron
русский: Синхротрон
русиньскый: Сінхротрон
srpskohrvatski / српскохрватски: Sinkrotron
Simple English: Synchrotron
Türkçe: Senkrotron
українська: Синхротрон