Serie trigonométrica

Las series trigonométricas son un tipo de series con la forma:

Son denominadas series de Fourier cuando los términos y tienen la forma:

donde es una función integrable.

Ceros de una serie trigonométrica

La unicidad y los ceros de las series trigonométricas fueron un área muy activa de investigación en el siglo XIX en Europa. Primero, Georg Cantor probó que si una serie trigonométrica es convergente hacia una función en el intervalo , cuando es idéntica a cero, o de forma más general, es no-nula en un conjunto finito de puntos, entonces los coeficientes de la serie son todos cero.[2]

Más adelante Georg Cantor probó que si el conjunto S (en el que es no-nula) es infinito, pero el conjunto derivado S' de S es finito, entonces los coeficientes son todos cero. De hecho, probó un resultado más general. Sea S0 = S y sea Sk+1 el conjunto derivado de Sk. Si hay un número finito n para el que Sn es finito, entonces todos los coeficientes son cero. Posteriormente, Lebesgue demostró que si hay un número ordinal α infinito tal que Sα es finito, entonces los coeficientes de la serie son todos cero. El trabajo de Cantor sobre el famoso problema de la unicidad de la serie le llevó al descubrimiento de los números ordinales transfinitos, que aparecen como los subíndices α en Sα.[3]