Ruido de cuantificación

Figura 1: Procesos de la conversión A/D.

Se define como error de cuantificación o ruido de cuantificación a la señal en tiempo discreto y amplitud continua introducida por el proceso de cuantificación (uno de los procesos que intervienen en la conversión analógica-digital, que sigue al de muestreo y precede al de codificación) y que resulta de igualar los niveles de las muestras de amplitud continua a los niveles de cuantificación más próximos. Una vez cuantificadas las muestras podrán ser codificadas ya que siempre se podrá establecer una correspondencia biunívoca entre cada nivel de cuantificación y un número entero. Para el caso del cuantificador ideal se trata del único error que introduce el proceso.

Figura 2: Función de transferencia del proceso de cuantificación. Un intervalo de valores de entrada (escalón de cuantificación) se corresponde con un único valor de salida. Así, por cada valor de entrada se obtiene un valor de salida y un error que, si se resta al de salida, devolvería el valor de entrada. El error es máximo cuando el valor de entrada es equidistante a sus dos niveles de cuantificación más próximos (se dice entonces que se encuentra sobre el nivel de decisión). El error es cero cuando el valor de entrada equivale a un nivel de cuantificación y, por tanto, al nivel de salida. Se puede observar que la amplitud máxima del error es de medio escalón de cuantificación (Δ = Escalón de cuantificación) mientras la señal de entrada se encuentra dentro del rango de cuantificación.

El proceso de convertir una señal en tiempo discreto de amplitud continua (esto es, en el proceso de muestreo la señal se ha dividido en el tiempo en un número finito de muestras pero el valor de estas aún no ha sido limitado en precisión) en una señal discreta en tiempo y amplitud (sus dos dimensiones), expresando cada muestra por medio de una precisión finita y conocida (en contraposición a una precisión infinita -en matemática- o indeterminada -en física-) consecuencia del ajuste a un número finito y determinado de niveles, se denomina cuantificación. La diferencia que resulta de restar la señal de entrada a la de salida es el error de cuantificación, esto es, la medida en la que ha sido necesario cambiar el valor de una muestra para igualarlo a su nivel de cuantificación más próximo. Esta diferencia, entendida como una secuencia de muestras de tiempo discreto pero de amplitud continua (al igual que la señal de entrada), puede ser interpretado en la práctica como una señal indeseada añadida a la señal original (motivo por el que se denomina ruido, aunque no siempre cumpla con todos los criterios necesarios para ser considerado así y no distorsión), de modo que se cumple:

Figura 3: Modelo matemático del ruido de cuantificación.

donde representa a la secuencia de muestras de amplitud continua a la entrada del cuantificador, a la secuencia de muestras de amplitud discreta (cuantificadas) a la salida del cuantificador y representa a la secuencia de muestras de amplitud continua del error de cuantificación. El receptor/lector de (o de su versión codificada posterior) no tiene la información necesaria para identificar el componente de error que incluye y poder recuperar . Es decir, la reconstrucción de las muestras originales de amplitud continua (sin cuantificar) no es posible sólo a partir de las muestras cuantificadas: falta la información necesaria para distinguir el error de la señal una vez estos se suman en la cuantificación (véase Figura 3).

En la Figura 2 es posible verificar que el error de cuantificación está siempre en el rango -Δ/2 a Δ/2 mientras la señal analógica de entrada se encuentre dentro del rango del cuantificador:

donde es el tamaño del escalón de cuantificación que viene dado por:

donde es el rango del cuantificador y el número de niveles de cuantificación.

Figura 4: La línea roja corresponde con las muestras (2000 en este ejemplo para el ciclo completo por lo que produce la ilusión de ser continua) sin cuantificar (muestras de entrada al cuantificador) de una señal original sinusoidal sin dither, la verde representa esas mismas muestras de entrada cuantificadas (salida del cuantificador ideal) y la azul muestra el error de cuantificación que resulta del proceso de cuantificación. La relación señal a ruido de cuantificación (SQNR) es para este caso de sólo 24,74 dB con objeto de resaltar el error de cuantificación y su forma. Dicho de otro modo, la amplitud de la sinusoidal original de entrada (línea roja) es de 7,5 niveles de cuantificación (la máxima amplitud de una sinusoidal que puede cuantificar un cuantificador por redondeo de 4 bits ya que el nivel de cuantificación de valor 0 no puede estar centrado al haber un número par de niveles totales). Con objeto de poner de manifiesto el ruido de cuantificación, a la señal de entrada sinusoidal de este ejemplo no se le ha añadido Dither (un ruido analógico que se añade intencionadamente a la señal de entrada antes de la conversión A/D). En la práctica, y como consecuencia de la lógica y habitual práctica de añadir dither (véase Ruido o distorsión: la necesidad de añadir dither), la figura notablemente escalonada de una señal cuantificada como la ilustrada aquí adquiere el aspecto de la Figura 9.

En el caso de que el error está limitado en magnitud [es decir, ], el error resultante se denomina ruido granular. Cuando la entrada cae fuera del rango de cuantificación (recorte), es ilimitado y resulta en ruido de sobrecarga.

Teóricamente, la cuantificación de las señales analógicas resulta siempre en una pérdida de información (incluso en su caso ideal). Éste es el resultado de la ambigüedad introducida por la cuantificación. De hecho, la cuantificación es un proceso no reversible, dado que a todas las muestras a un intervalo inferior a Δ/2 de un determinado nivel se les asignan el mismo valor. Sin embargo, discretizar una señal en su otra dimensión (el tiempo) mediante el proceso de muestreo, no es irreversible tal y como demuestra el teorema de muestreo y si se cumplen los criterios que impone el propio teorema debido a la naturaleza periódica y, por tanto, determinista de las señales que se someten a este proceso y a la limitación del ancho de banda (límite superior a la frecuencia de los componentes que componen la señal periódica). Dicho de otro modo, una onda periódica muestreada cumpliendo los criterios de Nyquist sólo puede comportarse de un único modo entre dos muestras contiguas y este comportamiento es totalmente deducible a partir de la serie completa de muestras de amplitud continua de la señal. La discretización de la dimensión amplitud (la cuantificación), es, por tanto, el único proceso que introduce un error teórico (en procesos ideales) sobre la señal original en todo el procedimiento completo de digitalización de una señal.

Espectro y distribución de probabilidad de la amplitud del error de cuantificación

El ruido de cuantificación es aproximadamente de distribución uniforme en amplitud y de densidad espectral más o menos constante ( ruido blanco) sobre toda la banda de Nyquist[1] (hasta la frecuencia crítica) en el supuesto de que el error de cuantificación no está correlacionado con la señal ni presente periodicidad. En este caso es posible referirse al error de cuantificación como un ruido blanco uniforme.

Bajo ciertas condiciones donde la tasa de muestreo y la señal están relacionados armónicamente, esto es, que alguno de sus componentes armónicos sea de una frecuencia submúltiplo par de la de muestreo, el error de cuantificación queda correlacionado y la energía se concentra en los armónicos de la señal (si bien la potencia del error es, en general, la misma que para el caso no correlacionado). En este caso, cuando la señal no deseada es función de la señal de entrada, el error no es un ruido y debe ser descrito como distorsión.

Other Languages