Resonancia magnética nuclear

Imagen del cerebro humano obtenida por resonancia magnética.
Imágenes de un corazón humano bombeando.

La resonancia magnética nuclear (RMN) es un fenómeno físico basado en las propiedades mecánico-cuánticas de los núcleos atómicos. RMN también se refiere a la familia de métodos científicos que explotan este fenómeno para estudiar moléculas (espectroscopia de RMN), macromoléculas (RMN biomolecular), así como tejidos y organismos completos ( imagen por resonancia magnética).

Todos los núcleos que poseen un número impar de protones o neutrones tienen un momento magnético y un momento angular intrínseco, en otras palabras, tienen un espín > 0. Los núcleos más comúnmente empleados en RMN son el protio ( 1H, el isótopo más sensible en RMN después del inestable tritio, 3H), el 13C y el 15N, aunque los isótopos de núcleos de muchos otros elementos ( 2H, 10B, 11B, 15N, 17O, 19F, 23Na, 29Si, 31P, 35Cl, 113Cd, 195Pt) son también utilizados.

La resonancia aprovecha que los núcleos atómicos (i. e. dentro de una molécula) resuenen a una frecuencia directamente proporcional a la fuerza de un campo magnético ejercido, de acuerdo con la ecuación de la frecuencia de precesión de Larmor. La literatura científica hasta el 2008 incluye espectros en un gran intervalo de campos magnéticos, desde 100 nT hasta 20 T. Los campos magnéticos mayores son a menudo preferidos puesto que correlacionan con un incremento en la sensibilidad de la señal aunque para la imagen por resonancia magnética en medicina se utilizan campos magnéticos que permitan utilizar radiación no ionizante. Existen muchos otros métodos para incrementar la señal observada. El incremento del campo magnético también se traduce en una mayor resolución espectral, cuyos detalles son descritos por el desplazamiento químico y el efecto Zeeman.

La RMN estudia los núcleos atómicos al alinearlos a un campo magnético constante para posteriormente perturbar este alineamiento con el uso de un campo magnético alterno, de orientación ortogonal. La resultante de esta perturbación es el fenómeno que explotan las distintas técnicas de RMN. El fenómeno de la RMN también se utiliza en la RMN de campo bajo, la RMN de campo terrestre y algunos tipos de magnetómetros.

Aplicaciones más comunes

La resonancia magnética hace uso de las propiedades de resonancia aplicando radiofrecuencias a los núcleos atómicos o dipolos entre los campos alineados de la muestra, y permite estudiar la información estructural o química de una muestra. La RM se utiliza también en el campo de la investigación de ordenadores cuánticos. Sus aplicaciones más frecuentes se encuentran ligadas al campo de la medicina, la bioquímica y la química orgánica. Es común denominar "resonancia magnética" al aparato que obtiene imágenes por resonancia magnética (IRM, o MRI por las siglas en inglés de Magnetic Resonance Imaging).

En relación a su uso en medicina, a veces el estudio requiere la inyección de fármacos basados en un elemento químico conocido como gadolinio. La razón es que el gadolinio actúa como un medio de contraste que mejora la calidad de la imagen por resonancia magnética. El elemento químico es tratado previamente, ligándolo a quelantes, para permitir su eliminación por el organismo y para disminuir su alta toxicidad. El gadolinio es responsable de un grave enfermedad conocida como fibrosis sistémica nefrogénica, una patología que afecta principalmente a personas con insuficiencia renal, el motivo parece ser que la sustancia se acumula en grandes dosis en el organismo de estas personas. Recientemente se ha descubierto otro hecho preocupante, el gadolinio también se acumula en cantidades significativas en los diferentes tejidos de personas con función renal normal.

Other Languages
azərbaycanca: Nüvə Maqnit Rezonans
suomi: NMR
Bahasa Indonesia: Resonansi magnet inti
日本語: 核磁気共鳴
한국어: 핵자기 공명
Nederlands: Kernspinresonantie
srpskohrvatski / српскохрватски: Nuklearna magnetna rezonancija
中文: 核磁共振