Regresión lineal

Ejemplo de una regresión lineal con una variable dependiente y una variable independiente.

En estadística la regresión lineal o ajuste lineal es un modelo matemático usado para aproximar la relación de dependencia entre una variable dependiente Y, las variables independientes Xi y un término aleatorio ε. Este modelo puede ser expresado como:

donde:

: variable dependiente, explicada o regresando.
: variables explicativas, independientes o regresores.
: parámetros, miden la influencia que las variables explicativas tienen sobre el regrediendo.

donde es la intersección o término "constante", las son los parámetros respectivos a cada variable independiente, y es el número de parámetros independientes a tener en cuenta en la regresión. La regresión lineal puede ser contrastada con la regresión no lineal.

Historia

La primera forma de regresión lineal documentada fue el método de los mínimos cuadrados que fue publicada por Legendre en 1805, Gauss publicó un trabajo en donde desarrollaba de manera más profunda el método de los mínimos cuadrados,[1] y en dónde se incluía una versión del teorema de Gauss-Márkov.

El término regresión se utilizó por primera vez en el estudio de variables antropométricas: al comparar la estatura de padres e hijos, donde resultó que los hijos cuyos padres tenían una estatura muy superior al valor medio, tendían a igualarse a éste, mientras que aquellos cuyos padres eran muy bajos tendían a reducir su diferencia respecto a la estatura media; es decir, "regresaban" al promedio.[2] La constatación empírica de esta propiedad se vio reforzada más tarde con la justificación teórica de ese fenómeno.

El término lineal se emplea para distinguirlo del resto de técnicas de regresión, que emplean modelos basados en cualquier clase de función matemática. Los modelos lineales son una explicación simplificada de la realidad, mucho más ágiles y con un soporte teórico mucho más extenso por parte de la matemática y la estadística.

Pero bien, como se ha dicho, se puede usar el término lineal para distinguir modelos basados en cualquier clase de aplicación.

Other Languages