Red bayesiana

Una red Bayesiana simple. Influencia de la lluvia si el rociador está activado e influencia de la lluvia y el rociador si la hierba se encuentra húmeda.

Una red bayesiana, red de Bayes, red de creencia, modelo bayesiano (de Bayes) o modelo probabilístico en un grafo acíclico dirigido es un modelo grafo probabilístico (un tipo de modelo estático) que representa un conjunto de variables aleatorias y sus dependencias condicionales a través de un grafo acíclico dirigido (DAG por sus siglas en inglés). Por ejemplo, una red bayesiana puede representar las relaciones probabilísticas entre enfermedades y síntomas. Dados los síntomas, la red puede ser usada para computar la probabilidad de la presencia de varias enfermedades.

Formalmente, las redes bayesianas son grafos dirigidos acíclicos cuyos nodos representan variables aleatorias en el sentido de Bayes: las mismas pueden ser cantidades observables, variables latentes, parámetros desconocidos o hipótesis. Las aristas representan dependencias condicionales; los nodos que no se encuentran conectados representan variables las cuales son condicionalmente independientes de las otras. Cada nodo tiene asociado una función de probabilidad que toma como entrada un conjunto particular de valores de las variables padres del nodo y devuelve la probabilidad de la variable representada por el nodo. Por ejemplo, si por padres son variables booleanas entonces la función de probabilidad puede ser representada por una tabla de entradas, una entrada para cada una de las posibles combinaciones de los padres siendo verdadero o falso. Ideas similares pueden ser aplicadas a grafos no dirigidos, y posiblemente cíclicos; como son las llamadas redes de Markov.

Existen algoritmos eficientes que llevan a cabo la inferencia y el aprendizaje en redes bayesianas. Las redes bayesianas que modelan secuencias de variables (ej señales del habla o secuencias de proteínas) son llamadas redes bayesianas dinámicas. Las generalizaciones de las redes bayesianas que pueden representar y resolver problemas de decisión bajo incertidumbre son llamados diagramas de influencia.

Ejemplo

Ejemplo de una red bayesiana simple.

Supongamos que hay dos eventos los cuales pueden causar que la hierba esté húmeda: que el rociador esté activado o que esté lloviendo. También supongamos que la lluvia tiene un efecto directo sobre el uso del rociador (usualmente cuando llueve el rociador se encuentra apagado). Entonces la situación puede ser modelada con una red Bayesiana (como hemos visto). Las tres variables tienen dos posibles valores, T (para verdadero) y F (para falso). La función de probabilidad conjunta es:

donde los nombres de las variables han sido abreviados a G = Hierba húmeda, S = Rociador activado, y R = Lloviendo.

El modelo puede responder preguntas como "¿Cuál es la probabilidad de que esté lloviendo dado que la hierba está húmeda?" usando la fórmula de probabilidad condicional y sumando sobre todas las variables incordias:

Como está señalado explícitamente en el numerador del ejemplo, la función de probabilidad conjunta es usada para calcular cada iteración de la función de sumatoria, marginalizando sobre en el numerador y sobre y en el denominador.

Si, por otra parte, deseamos responder una pregunta intermedia: "¿Cuál es la probabilidad de que llueva dado que la hierba está húmeda?" la respuesta puede ser dada por la post-intervención de la función de distribución conjunta obtenida removiendo el factor de la distribución de pre-intervención. Como era de esperarse, la probabilidad de que llueva no es afectada por la acción: .

Si por otra parte queremos predecir el impacto que tendrá encender el rociador, tenemos entoncs con el término eliminado, mostrando que la acción tiene efecto sobre la hierba pero no sobre la lluvia.

Estas predicciones no son factibles cuando alguna de las variables no son observadas, como en la mayoría de los problemas de evaluación. El efecto de la acción puede mantenerse predictivo, sin embargo, cada vez un criterio llamado "puerta trasera" es satisfecho.[1] Los estados que, si un conjunto Z de nodos se puede observar que d-separa (o bloquea) todos los caminos de "puestra trasera" desde X hasta Y entonces . Un camino de puestra trasera es uno que termina con una flecha hacia X. Los conjuntos que satisfacen el criterio de puerta trasera son llamados "suficientes" o "admisibles". Por ejemplo, el conjunto Z=R es admisible para predecir el efecto de S=T sobre G, porque R d-separa el (único) camino de puerta trasera S?R?G. Sin embargo, si S no es observado, no hay otro conjunto que d-separe este camino y el efecto de encender los rociadores (S=T) sobre la hierba (G) no puede ser predecido desde observaciones pasivas. Nosotros entonces decimos que no está identificado. Esto refleja el hecho de que, careciendo de datos intervencionales, no podemos determinar si la dependencia observada entre S y G es debido a una conexión casual o debido a una artificial creada por una causa común, R. (ver paradoja de Simpson)

Para determinar si una relación casual es identificada desde una red Bayesiana arbitraria con variables no obervadas, uno puede usar las tres reglas de "do-calculus"[3]

Usar una red de bayesian puede salvar las cantidades considerables de la memoria, si las dependencias en el reparto conjunto están escasas. Por ejemplo, una manera ingenua de guardar las probabilidades condicionales de 10 variables con dos valores como una tabla requiere el espacio de almacenamiento para valores. Si las distribuciones locales de ninguna variable depende de más de 3 variables padre, la representación de la red de bayesiana solamente tiene que almacenar a lo sumo valores.

Una ventaja de las redes bayesianas es que es intuitivamente más fácil para un ser humano comprender (un conjunto escaso de) dependencias directas y distribuciones locales que la distribución conjunta completa.

Other Languages
العربية: شبكة بايزية
italiano: Reti Bayesiane
norsk bokmål: Bayesiansk nettverk
português: Rede bayesiana
Simple English: Bayesian network
Basa Sunda: Jaringan Bayes
Türkçe: Bayes ağı
українська: Баєсова мережа
Tiếng Việt: Mạng Bayes
中文: 貝氏網路