Red (grupo)

Una red en el plano euclidiano.

En matemáticas, especialmente en geometría y teoría de grupos, una red o retículo en Rn es un subgrupo discreto de Rn que genera el espacio vectorial Rn de los números reales. Cada red en Rn se puede generar a partir de una base del espacio vectorial mediante la formación de todas las combinaciones lineales de coeficientes enteros. Una red o retículo puede ser vista como una teselación regular de un espacio por una celda o malla primitiva.

Las redes tienen muchas aplicaciones importantes en la matemática pura, en especial en relación al álgebra de Lie, teoría de números y la teoría de grupos. También se presentan en matemáticas aplicadas en relación con la teoría de la codificación, en criptografía debido a la dificultad del cálculo en varios problemas de red, y se utiliza en diversos campos de las ciencias físicas. Por ejemplo, en ciencia de los materiales y física del estado sólido, una red es un sinónimo del esqueleto de una estructura cristalina, una matriz de puntos regularmente espaciados en tres dimensiones coincidiendo con las posiciones de los átomos o moléculas en un cristal. Más en general, los modelos de redes se estudian en física, muy frecuentemente mediante las técnicas de la física computacional.

Consideraciones de simetría y ejemplos

Una red es el grupo de simetría de la simetría traslacional discreta en n direcciones. Un patrón o modelo de esta red de simetría traslacional no puede tener más, pero sí puede tener menos simetría que la propia red en sí misma.

Una red en el sentido de un conjunto tridimensional de puntos regularmente espaciados que coinciden, por ejemplo con las posiciones de los átomos o moléculas en un cristal, o de forma más general, la órbita de una acción de grupo en virtud de la simetría traslacional, es un traslado de la red de traslación: una clase lateral, que no tiene que contener el origen, y por ello no necesita ser una red en el sentido anterior.

Un ejemplo simple de una red en Rn es el subgrupo Zn. Un ejemplo más complicado es la red de Leech, que es una red en R24. El periodo de red en R2 es fundamental para el estudio de las funciones elípticas desarrollado en las matemáticas del siglo XIX, generalizada a las dimensiones superiores en la teoría de las funciones abelianas.

Other Languages