Razonamiento inductivo

El propósito del razonamiento inductivo o lógica inductiva es el estudio de las pruebas que permiten medir la probabilidad de los argumentos, así como de las reglas para construir argumentos inductivos fuertes. A diferencia del razonamiento deductivo, en el razonamiento inductivo no existe acuerdo sobre cuándo considerar un argumento como válido. De este modo, se hace uso de la noción de "fuerza inductiva", que hace referencia al grado de probabilidad de que una conclusión sea verdadera cuando sus premisas son verdaderas. Así, un argumento inductivo es fuerte cuando es altamente improbable que su conclusión sea falsa si las premisas son verdaderas[1]

Tradicionalmente se consideraba (y en muchos casos todavía se considera) que el razonamiento inductivo es una modalidad del razonamiento que consiste en obtener conclusiones generales a partir de premisas que contienen datos particulares o individuales. Por ejemplo, a partir de la observación repetida de objetos o eventos de la misma índole se establece una conclusión general para todos los objetos o eventos de dicha naturaleza.[4]

Sin embargo, esa definición, en el presente y en lógica, ya no está en uso: “Como ya mencionamos, a veces se expresa la diferencia entre deducción e inducción diciendo que la segunda, contrariamente a la primera, “va de lo particular a lo general”. Si con ello se quiere decir que en un argumento inductivo válido las premisas son siempre todas afirmaciones particulares y la conclusión es una afirmación general (esto es, cuantificacional).[8]

Consecuentemente, en el presente, “mucho de la inferencia sintética o contingente ahora se toma como inductiva, algunas autoridades van tan lejos como a considerar toda inferencia contingente como inductiva.“[10] y Peirce en la inducción como probabilidad más abajo).

Muchos consideran que, a pesar que la inducción no puede ser validada (ver Problema de la inducción y más abajo), dado que expande nuestro conocimiento del mundo real, es parte indispensable del método científico:[12]

Inducción tradicional

Orígenes

El origen del método inductivo en la filosofía moderna se debe a la obra de Sir Francis Bacon[15]

Bacon acepta la definición de Aristóteles de la inducción: "La inducción es un tránsito de las cosas individuales a los conceptos universales", la clarifica argumentando que significa obtener los axiomas sobre los que se basa el razonamiento correcto a partir "de los sentidos y los hechos particulares elevándose continua y progresivamente para llegar, en el último lugar a los principios más generales; este es el camino verdadero, pero todavía no probado", establece como método que "la inducción que ha de ser útil para el descubrimiento de las ciencias y las artes, debe analizar la naturaleza por las debidas eliminaciones y exclusiones; y luego, tras un número suficiente de negativas, concluir sobre hechos afirmativos".

Los elementos de ese método son: "la tabla de presencia", "la tabla de ausencia" y "la tabla de grados". En la primera se hace un inventario de los hechos donde aparece el fenómeno (que Bacon llama "la naturaleza") bajo estudio, tratando que esos hechos sean de características muy variadas para lograr así la visión más completa posible de lo que la experiencia ofrece; en la segunda tabla se deben recoger hechos donde el fenómeno en cuestión no está presente, pero estos hechos deben ser similares a los recogidos en la primera tabla, para así eliminar aquellos casos donde se pueda contraponer un caso negativo; en la tercera tabla debemos ubicar casos donde el fenómeno varia en intensidad aparente. A partir de todo eso, Bacon sugiere que: "Entonces realmente después de hecha la separación y exclusión en debida forma, quedará en segundo (y como en el fondo), desvaneciéndose en humo las opiniones volátiles, la forma afirmativa, sólida y verdadera y bien determinada".

Inducción de acuerdo con Hume: orígenes y problemas

Posteriormente David Hume introduce una distinción entre “ámbitos” del conocimiento que, incluso en el presente, muchos consideran fundamental: “Las existencias reales, las cuestiones de hecho, así como las relaciones de ideas, son, epistemologicamente hablando irreductibles. Se necesitan métodos distintos para dar razón de unas y otras. La deducción es válida para las segundas, solo la inducción lo es para las primeras. La distinción entre estos dos ámbitos de conocimiento la formula Hume diciendo, en primer lugar, en el Treatise: ‘El entendimiento se ejerce en dos formas diferentes, cuando juzga desde la demostración o desde la probabilidad; cuando considera las relaciones abstractas de nuestras ideas o aquellas relaciones de objetos de las que solo la experiencia nos da información”.[16]

Para Hume la inducción es, básicamente, un proceso psicológico: nuestros aparatos mentales (y no solo los humanos[19]

En otras palabras, una inducción se origina cuando notamos que ciertos hechos parecen repetirse. Es decir, si se quiere, una cuestión de lo que estamos acostumbrados. En las palabras de Hume: “la costumbre es, pues, la gran guía de la vida humana. Tan solo este principio hace que nuestra experiencia nos sea útil y nos obliga a esperar en el futuro una serie de acontecimientos similares a los que han aparecido en el pasado. Sin el influjo de la experiencia estaríamos en total ignorancia de toda cuestión de hecho, más allá de lo inmediatamente presente a la memoria y a los sentidos” (Hume, 1980-1, 68).[20]

Hume sugirió que el problema de la inducción se puede resolver estableciendo criterios, reglas o cánones que permitieran utilizar la inducción adecuadamente. "Es sólo siguiendo ciertas reglas generales, que pueden corregirse en sus errores. (Ver Bates 2005 para una discusión de este proceso).”.[21] Desde ese punto de vista Hume propone dos tipos básicos de inducciones:

  • Por contigüidad. Si muchas veces y sin excepción percibimos que A precede a B, podemos concluir que A causa B. En otras palabras: dado cualquier par de objetos el uno seguido por el otro, donde todos los objetos similares al primero son seguidos por objetos similares al segundo, se establece una relación causal.
  • Por enumeración: si cada instancia específica de algún fenómeno que se examine muestra una cierta característica, podemos esperar que cualquier caso de ese tipo que examinemos en el futuro mostrara esa característica. En otras palabras: si cada A examinada es B, A es B. Por ejemplo, si cada esmeralda que hemos visto en el pasado es verde, podemos esperar que todas las esmeraldas sean verdes. Estas inducciones establecen una probabilidad.

Inducción de Herschel: búsqueda de causas

John Herschel[23] ).

En la opinión de Herschel, el proceso de descubrimiento de las relaciones causales que sostienen las leyes científicas o relaciones que afectan a un fenómeno es básicamente inductivo. Herschel interés es el asunto del descubrimiento de tales relaciones. Al igual que Hume, Herschel establece dos tipos de inducciones, basados en dos principios generales.

I.- Principio de clasificación: investigación y comparación de individuos de alguna supuesta clase. Este tipo es apropiado cuando una ciencia esta en el comienzo de su desarrollo. Consiste en tratar de encontrar las características que esos individuos comparten, aparte de lo que llevó a agruparlos como clase para empezar.

II.- Principio de comparación y contraste: estudiar las clases ya establecidas (por el principio anterior) tomando nota de sus similaridades y diferencias. Por ejemplo, la comparación y contraste de los fenómenos eléctricos y los magnéticos. Esta aproximación es conveniente cuando los hechos a estudiar son numerosos y bien documentados, es decir, cuando alguna rama de la ciencia ya ha logrado algún desarrollo.

Esos principios se aplican dando atención a los siguientes aspectos o criterios:

1.-Conexiones causales: La detección de una posible causa mediante la comparación de los casos examinados debe conducir a una de dos cosas: (A) la detección de la causa real y su manera de actuar, lo que proporciona una explicación completa de los hechos; o (B) el establecimiento de una ley abstracta de la naturaleza, señalando dos fenómenos generales como siempre conectados-donde hay uno, el otro también aparece. La conexión invariable es un fenómeno de orden superior al de un hecho en particular. Cuando se descubren muchas tales conexiones, se puede volver a "clasificar, combinar y analizar, con miras a la detección de sus causas, o el descubrimiento de las leyes aún más generales, y así sucesivamente sin fin."

2.-Semejanzas: Cuando los hechos son similares en un cierto respecto en todos los casos, entonces esta es la causa del fenómeno o, si no, es un efecto colateral de la misma causa. Esta posibilidad se convierte en certeza si, entre todos los casos, sólo hay un punto de acuerdo. Si hay más de una semejanza, pueden haber "causas concurrentes".

3.-Intensidades: Las causas se hacen, generalmente, más evidentes cuando arreglamos los hechos en orden de la intensidad en la que alguna cualidad peculiar existe, aunque no necesariamente, ya que puede ser que estén actuando al mismo tiempo otros factores que contrarresten o modifiquen las causas.

4.- Analogías fuertes: En la presencia de fuertes similaridades entre dos o más fenómenos o clases de fenómenos, no es posible negar la existencia de una causa por el simple hecho que no sea evidente cómo una puede producir el efecto. Debemos remitirnos a la experiencia y tratar de aclarar el misterio, en lugar de decidir "a priori".

5.-Exclusiones: Si en nuestro grupo de hechos hay uno en el cual no se observa el fenómeno causal postulado, o encontramos lo contrario, entonces tal peculiaridad no es la causa que buscamos. Las causas preceden a los efectos, así que si hay un hecho en el cual no se revela la causa predicada, sigue que esa no puede ser la causa que estamos buscando.

6.-Hechos contrarios: hechos contrarios u opuestos son tan instructivos, para el descubrimiento de causas, como son los hechos favorables.

7.-Diferencias de antecedentes: Si podemos encontrar en la naturaleza, o producimos experimentalmente, dos ejemplos de grupos de elementos o factores que coinciden exactamente en todo aspecto menos uno en particular, la influencia de esa diferencia en el fenómeno consecuente debe ser profundizada: la producción o no producción del fenómeno bajo estudio determinará si el factor presente o ausente es o no es la única causa. Esto es aún más evidente si se puede lograr una inversión: al introducir el elemento donde no estaba y eliminarlo donde estaba, el efecto también se revierte. Pero si la presencia total o ausencia de este factor o elemento solamente produce un cambio en el grado o la intensidad del fenómeno, sólo podemos concluir que actúa como una causa concurrente con alguna otra, que debe buscarse.

8.-Causas contrarias: que son los factores que contrarrestan o introducen modificaciones en casos en que los fenómenos deberían haberse manifestado en cierta forma no lo hacen. Las excepciones a una ley general propuesta pueden, a menudo, ser explicadas o excluidas mediante la consideración o eliminación de causas opuestas.

9.-Variaciones concomitantes: Si estamos tratando de descubrir la influencia de algún factor o circunstancia, y no se lo puede eliminar por completo o interfieren otros factores, debemos alterar su influencia a través de la introducción de otro factor, que creemos que es probable afecte el fenómeno resultante, y así obtener una evidencia indirecta de su influencia.

10.- Residuos o subducciones: fenómenos complicados tienen una pluralidad de causas, que concurren, se oponen o son independientes unas de otras y operan simultáneamente, y por tanto producen un efecto complejo. El fenómeno se puede simplificar resumiendo o “subduciendo” el efecto de todas las causas conocidas, ya sea por razonamiento deductivo o apelando a la experiencia, siendo el resultado un “fenómeno residual” que requiere explicación. Este es el proceso, en la opinión de Herschel, mediante el cual una ciencia avanzada progresa. La mayoría de los fenómenos naturales son, cuando los efectos de todas las causas conocidas se estiman con exactitud y subducidas, muy complejos. Los hechos residuales están constantemente manifestándose bajo la forma de nuevos fenómenos, cuyos estudios conducen a las conclusiones más importantes.

A partir de las leyes descubiertas por lo anterior, Herschel postula se generan teorías, en un paso ulterior y de más elevado nivel al establecimiento de leyes, lo que también significa que dependen mucho menos de la realidad. Las teorías son más bien creaciones de la mente.

Los cánones de Mill

John Stuart Mill[24]

Los primeros cuatro cánones, apuntan a concluir qué circunstancia hallada en los casos es causa del fenómeno estudiado. En el último, las causas se buscan en otros fenómenos.

I. Método de la concordancia.

Sirve para identificar las condiciones necesarias. Se rige por el siguiente principio, a saber: “Cualquier propiedad que se encuentre ausente cuando el efecto esté presente no puede ser una condición necesaria”. Esto es lo mismo que decir: “Cualquier posible causa necesaria para que ocurra un efecto que se encuentre ausente cuando el efecto está presente, no puede ser una condición necesaria del efecto”.

Por ejemplo: supongamos que estudiamos la combustión (o lo que es lo mismo, la propiedad condicionada "combustión") y deseamos dilucidar cuáles son las posibles causas (o lo que es lo mismo, las posibles propiedades condicionantes) de la misma. Para que se produzca la combustión son causas necesarias: el combustible, el oxígeno y la chispa. Supongamos ahora que en una situación dada observamos el fenómeno de la combustión. Supongamos ahora que sospechamos algo absurdo: que el agua es una posible causa necesaria para la combustión. Ahora, en una situación dada, observamos que la posible propiedad condicionante “agua” está ausente cuando el efecto de la combustión está presente. De este modo concluimos que el agua no puede ser condición necesaria para la combustión, ya que observamos que el agua se encuentra ausente cuando el efecto, la combustión, está presente. Si esta observación se produce una y otra vez, tenemos motivos fundados para concluir que, mientras que la experiencia de otras observaciones no demuestre lo contrario, el agua no puede ser condición necesaria para la combustión.

II. Método de la diferencia. Si una circunstancia entre varias iguales es la que distingue al resto de los casos, y el fenómeno se da diferente en ese caso, entonces dicha circunstancia es la causa del fenómeno.

III. Método de la concordancia y diferencia. Es el método de la concordancia, que se verifica con el método de la diferencia. Este método puede parecer más seguro. Sin embargo, tampoco es infalible.

IV. Método de los residuos. Consiste en eliminar determinadas circunstancias, e ir observando si el fenómeno persiste.

V. Método de las variaciones concomitantes. Consiste en observar las variaciones del fenómeno, y descubrir qué otro fenómeno varía de manera concomitante. Si se encuentra, ése puede ser la causa del fenómeno estudiado.

En la práctica Mill sugiere pasar de lo particular a lo particular, evitando generalizaciones (por lo menos, las prematuras) pero asumiendo que eventos en el futuro continuaran presentando la misma forma o que las mismas causas ocasionaran los mismos efectos observados en el pasado (ver Causalidad (filosofía). Lo que implica, por ejemplo, la creencia que las leyes científicas serán válidas en el futuro — Mill llamo a esta asunción el principio de la uniformidad de la naturaleza[25] — a fin de establecer relaciones de causas específicas.

Por ejemplo: he visto ese cisne y era blanco. He visto ese otro cisne y era blanco. Y otro más, y aún otro... etc. Espero que el próximo cisne que vea será blanco. Lo mismo pero explicitando el principio de uniformidad: he visto ese cisne y era (por cualquier motivo) blanco. Ese otro cisne era (por cualquier motivo, pero presumiblemente el mismo) blanco.... Espero que el próximo cisne será (por cualquiera que sea ese motivo) blanco. Lo mismo después de estudios: los cisnes europeos son, debido a causas genéticas, blancos. Otros, debido a esas causas, no lo son.

Siguiendo la posición que Mill delinea más arriba, es posible entonces dilucidar cuales son las situaciones que permiten establecer suficientemente, a partir de un solo caso, una inducción correcta: si por examinación de casos similares se ha establecido la causa del fenómeno (por ejemplo: el establecimiento de que el color del plumaje de los cisnes depende de causas genéticas) bastaría un solo ejemplo de un cisne azul para poder generalizar que, dada ciertas circunstancias (que produzcan variabilidad genética), los cisnes tienen plumaje azul. Si generalizamos lo anterior a decir que las características morfológicas de los animales en general (incluyendo aves) se deben a razones genéticas, bastaría un solo ejemplar de algún orden (biología) o especie -hasta entonces desconocida- para poder postular la existencia de esa especie. Y con algunas observaciones, se puede afirmar tal existencia. (ver, por ejemplo: Homo floresiensis).

El "principio de la uniformidad de la naturaleza" es conocida en el presente como el principio de invariancia ("Por ejemplo, la regla que describe la fuerza de gravedad de Newton entre dos trozos de materia es la misma tanto si están en esta galaxia o en otra (invariancia traslacional en el espacio). También es la misma hoy como lo fue hace millones de años (invariancia traslacional en el tiempo). La ley no funciona de manera diferente dependiendo de si un trozo está al este o al norte de la otra (la invariancia rotacional). La ley tampoco tiene que ser cambiado dependiendo de si se mide la fuerza entre los dos trozos en una estación de ferrocarril, o hacer el mismo experimento con los dos trozos en un tren en movimiento uniforme (principio de la relatividad)"[33] y teorema de Noether).

Other Languages
bosanski: Indukcija
čeština: Logická indukce
Esperanto: Indukta logiko
فارسی: استقراء
עברית: אינדוקציה
hrvatski: Indukcija
Հայերեն: Մակածություն
Bahasa Indonesia: Pembuktian melalui induksi
íslenska: Tilleiðsla
italiano: Induzione
日本語: 帰納
한국어: 귀납
монгол: Индукци
norsk bokmål: Induksjon (filosofi)
português: Método indutivo
srpskohrvatski / српскохрватски: Indukcija
Simple English: Inductive reasoning
slovenčina: Indukcia (logika)
slovenščina: Indukcija (logika)
српски / srpski: Индукција (логика)
тоҷикӣ: Истиқроъ
Türkmençe: Induktiw logika
Türkçe: Tümevarım
українська: Індукція (логіка)
oʻzbekcha/ўзбекча: Induksiya (mantiq)
Tiếng Việt: Lập luận quy nạp
中文: 归纳推理
粵語: 歸納