Radiación ionizante

Señal de riesgo por radiación en transporte.

Radiaciones ionizantes son aquellas radiaciones con energía suficiente para ionizar la materia, extrayendo los electrones de sus estados ligados al átomo.

Radiaciones y tipos de radiación

Espectro electromagnético en diagrama que ilustra[1] que la radiación ionizante aparece en frecuencias superiores a Hz.

Existen otros procesos de emisión de energía, como por ejemplo el debido a una lámpara, un calentador (llamado radiador precisamente por radiar calor o radiación infrarroja), o la emisión de radio ondas en radiodifusión, que reciben el nombre genérico de radiaciones.

Las radiaciones ionizantes pueden provenir de sustancias radiactivas, que emiten dichas radiaciones de forma espontánea, o de generadores artificiales, tales como los generadores de Rayos X y los aceleradores de partículas.

Las procedentes de fuentes de radiaciones ionizantes que se encuentran en la corteza terráquea de forma natural, pueden clasificarse como compuesta por partículas alfa, beta, rayos gamma o rayos X. También se pueden producir fotones ionizantes cuando una partícula cargada que posee una energía cinética dada, es acelerada (ya sea de forma positiva o negativa), produciendo radiación de frenado, también llamada bremsstrahlung, o de radiación sincrotrón por ejemplo (hacer incidir electrones acelerados por una diferencia de potencial sobre un medio denso como tungsteno, plomo o hierro es el mecanismo habitual para producir rayos X). Otras radiaciones ionizantes naturales pueden ser los neutrones o los muones.

Las radiaciones ionizantes interaccionan con la materia viva, produciendo diversos efectos. Del estudio de esta interacción y de sus efectos se encarga la radiobiología.

Son utilizadas, desde su descubrimiento por Wilhelm Conrad Roentgen en 1895, en aplicaciones médicas e industriales, siendo la aplicación más conocida los aparatos de rayos X, o el uso de fuentes de radiación en el ámbito médico, tanto en diagnóstico ( gammagrafía) como en el tratamiento (radioterapia en oncología, por ejemplo) mediante el uso de fuentes (p.ej. cobaltoterapia) o aceleradores de partículas.

Clasificación de las radiaciones ionizantes

Representación sencilla del poder de penetración de los distintos tipos de radiación ionizante. Una partícula alfa no penetra una lámina de papel, una beta no penetra una lámina de metal y un fotón gamma penetra incluso grandes espesores de metal u hormigón.

Según sean fotones o partículas

Según la ionización producida

  • Radiación directamente ionizante: suele comprender a las radiaciones corpusculares formadas por partículas cargadas que interaccionan de forma directa con los electrones y el núcleo de los átomos de moléculas blanco o diana como el oxígeno y el agua. Suelen poseer una transferencia lineal de energía alta.
  • Radiación indirectamente ionizante: está formada por las partículas no cargadas como los fotones, los neutrinos o los neutrones, que al atravesar la materia interaccionan con ella produciendo partículas cargadas siendo éstas las que ionizan a otros átomos. Suelen poseer una baja transferencia lineal de energía.

Según la fuente de la radiación ionizante

  • Las radiaciones naturales: proceden de radioisótopos que se encuentran presentes en el aire (como por ejemplo el 222 Rn o el 14 C), el cuerpo humano (p. ej. el 14 C o el 235 U), los alimentos (p. ej. el 24 Na o el 238 U)), la corteza terrestre (y por tanto las rocas y los materiales de construcción obtenidos de éstas, como el 40 K), o del espacio ( radiación cósmica). Son radiaciones no producidas por el hombre. Más del 80% de la exposición a radiaciones ionizantes en promedio a la que está expuesta la población proviene de las fuentes naturales.
  • Las diferentes radiaciones artificiales: están producidas mediante ciertos aparatos o métodos desarrollados por el ser humano, como por ejemplo los aparatos utilizados en radiología, algunos empleados en radioterapia, por materiales radiactivos que no existen en la naturaleza pero que el ser humano es capaz de sintetizar en reactores nucleares o aceleradores de partículas, o por materiales que existen en la naturaleza pero que se concentran químicamente para utilizar sus propiedades radiactivas. La naturaleza física de las radiaciones artificiales es idéntica a la de las naturales. Por ejemplo, los rayos X naturales y los rayos X artificiales son ambos rayos X (fotones u ondas electromagnéticas que proceden de la desexcitación de electrones atómicos). Ejemplos de fuentes artificiales de radiación son los aparatos de rayos X, de aplicación médica o industrial, los aceleradores de partículas de aplicaciones médicas, de investigación o industrial, o materiales obtenidos mediante técnicas nucleares, como ciclotrones o centrales nucleares.

Los restos de las explosiones de bombas en la Segunda Guerra Mundial, en las pruebas atómicas llevadas a cabo en la atmósfera por las potencias nucleares durante el inicio de la Guerra Fría, o las debidas al accidente de Chernobyl dan lugar a una presencia ubicua de radioisótopos artificiales procedentes de la fisión (principalmente 137 Cs). Los isótopos de semiperiodo más largo serán detectables durante decenas de años en toda la superficie terrestre.

Other Languages
العربية: إشعاع مؤين
беларуская (тарашкевіца)‎: Іянізавальнае выпраменьваньне
български: Радиация
Esperanto: Joniga radiado
Kreyòl ayisyen: Radyasyon iyonik
íslenska: Jónandi geislun
日本語: 放射線
Bahasa Melayu: Sinaran pengion
norsk nynorsk: Ioniserande stråling
norsk bokmål: Ioniserende stråling
srpskohrvatski / српскохрватски: Ionizirajuće zračenje
Simple English: Ionizing radiation
slovenščina: Ionizirajoče sevanje
oʻzbekcha/ўзбекча: Radiatsiya
Tiếng Việt: Phóng xạ ion hóa
中文: 游離輻射