Qubit

Representación gráfica de un qubit en forma de esfera de Bloch: aparte de los estados , son posibles estados generales de tipo .

Un qubit o cubit (del inglés quantum bit, o sea bit cuántico) es un sistema cuántico con dos estados propios y que puede ser manipulado arbitrariamente. Se trata de un sistema que solo puede ser descrito correctamente mediante la mecánica cuántica, y que solamente tiene dos estados bien distinguibles mediante medidas físicas. También se entiende por qubit la información que contiene ese sistema cuántico de dos estados posibles. En esta acepción, el qubit es la unidad mínima y por lo tanto constitutiva de la teoría de la información cuántica. Es un concepto fundamental para la computación cuántica y para la criptografía cuántica, el análogo cuántico del bit en informática.

Su importancia radica en que la cantidad de información contenida en un qubit, y, en particular, la forma en que esta información puede ser manipulada, es fundamental y cualitativamente diferente de un bit clásico. Hay operaciones lógicas, por ejemplo, que son posibles en un qubit y no en un bit.[1]

El concepto de qubit es abstracto y no lleva asociado un sistema físico concreto. En la práctica, se han preparado diferentes sistemas físicos que, en ciertas condiciones, pueden describirse como qubits o conjuntos de qubits. Los sistemas pueden ser de tamaño macroscópico, como un circuito superconductor, o microscópico, como un conjunto de iones suspendidos mediante campos eléctricos.

Matemáticamente, un qubit puede describirse como un vector de módulo unidad en un espacio vectorial complejo bidimensional. Los dos estados básicos de un qubit son y , que corresponden al 0 y 1 del bit clásico (se pronuncian: ket cero y ket uno). Pero además, el qubit puede encontrarse en un estado de superposición cuántica combinación de esos dos estados (). En esto es significativamente distinto al estado de un bit clásico, que puede tomar solamente los valores 0 o 1; en resumen:

Un bit puede contener un valor (0 ó 1), y un qubit contiene ambos valores (0 y 1).

El término qubit se atribuye a un artículo de Benjamin Schumacher que describía una forma de comprimir la información en un estado y de almacenar la información en el número más pequeño de estados, que ahora se conoce como compresión de Schumacher.[3] y qutrit al análogo del qubit con tres, y no dos, estados cuánticos, representados convencionalmente por: , y ( kets cero, uno y dos). Para más dimensiones del espacio de Hilbert, o cuando se está generalizando a d dimensiones, se habla de qudit.[4]

Concepto de qubit y fundamento matemático

Los qubits como unidades de información cuántica

Esta imagen contiene 1 bit, 4 bits u 8 kilobytes, dependiendo, de nuestras expectativas.

A la hora de definir la información contenida en cualquier sistema físico, es importante tener en cuenta que la cantidad de información depende no tanto del estado físico sino del conjunto de estados que se estén considerando. Por ejemplo, la imagen de la derecha contiene un solo bit de información si la alternativa a un "1" es un "0": un estado entre dos posibles es un bit. Codificaríamos la información con una sucesión de ceros o unos, y cada uno aportaría un bit. En cambio, si estamos hablando de bolas de billar del tipo que se usan en un juego de bola 8, de entre las 15 numeradas más la blanca, el contenido informativo cambia. En ese caso, al pensar en la bola 1 estaríamos hablando de una posibilidad entre 16 alternativas, esto es, cuatro bits. La información se codificaría entonces en una sucesión de bolas de billar de entre 16 posibles, luego cada una de ellas aportaría cuatro bits. Finalmente, si de la forma más general posible pensamos en esta imagen como un archivo binario, veremos que ocupa 8 kilobytes, de forma que una sucesión de archivos similares contendría 8kB de información por cada uno.

Así, se llama información cuántica a la información física contenida en el estado de un sistema cuántico, de entre un conjunto de estados posibles. El qubit es la medida más utilizada para cuantificar la información cuántica. Varios qubits juntos forman un registro de qubits o registro cuántico. La teoría de la información cuántica es el resultado del esfuerzo por generalizar la teoría de la información clásica de Shannon. Ofrece una nueva perspectiva a la física, complementaria a la perspectiva geométrica.[5]

En la física clásica ya se encontraban relaciones fuertes con la información, como en el caso de la entropía ilustrado por el demonio de Maxwell. En mecánica cuántica esta relación se extiende, y se encuentran resultados como el recién mencionado teorema de no clonación, que impide el copiado de un estado cuántico no conocido, con consecuencias profundas en computación cuántica pero también con una relación clara con el principio de indeterminación.

Diferencias entre bits y qubits

Ya se ha indicado una de las diferencias entre bit y qubit: un bit toma valores discretos mientras que los valores representados por un qubit son de naturaleza continua. Sin embargo, esta característica podría replicarse con magnitudes continuas clásicas (longitudes, voltajes, etc).

Una segunda diferencia es el paralelismo cuántico, que es la posibilidad de representar simultáneamente los valores 0 y 1. Los algoritmos cuánticos que operan sobre estados de superposición realizan simultáneamente las operaciones sobre todas las combinaciones de las entradas. Por ejemplo, los dos qubits.

representan simultáneamente las combinaciones 00, 01, 10 y 11. En este "paralelismo cuántico" se cifra la potencia del cómputo cuántico.

Una tercera característica importante que distingue al qubit del bit clásico es que múltiples qubits pueden presentarse en un estado de entrelazamiento cuántico. En el estado no entrelazado

pueden darse las cuatro posibilidades: que la medida del primer qubit dé 0 o 1 y que la medida del segundo qubit dé 0 o 1. Esto es posible porque los dos qubits de la combinación son separables (factorizables), pues la expresión anterior puede escribirse como el producto

.

El entrelazamiento es una característica no local que permite que un sistema de qubits se exprese con una correlación más alta que la posible en sistemas clásicos. Un sistema de dos qubits entrelazados no puede descomponerse en factores independientes para cada uno de los qubits. Sea, por ejemplo, el entrelazamiento de dos qubits en un estado de Bell:

(Nota: en este estado las probabilidades de obtener |00> o |11> son iguales.)

Supongamos que uno de estos dos qubits entrelazados se entrega a Alicia y el otro a Bob. Alicia hace la medida de su qubit, y supongamos que obtiene el valor 0. Debido al entrelazamiento de los qubits, si Bob hace ahora su medida, conseguirá el mismo valor que Alicia, es decir, debe obtener 0. Esto es porque no existe el término |01>. De la misma forma, si Alicia hace su medida y obtiene el valor 1, y Bob la hace después, deberá obtener obligatoriamente 1 (puesto que no existe el término |10>). De esta forma, el resultado que obtiene Bob está condicionado por el que obtenga Alicia, aunque estén separados por años luz de distancia.

Este estado puede utilizarse para realizar la teleportación cuántica.

Uno de los principales modelos de computación cuántica es el circuito cuántico, en el que se aplican puertas lógicas sobre los qubits. En el modelo de circuito cuántico cualquier algoritmo cuántico se expresa como una serie de puertas lógicas cuánticas que actúan sobre uno o varios qubits. Esta manipulación de los estados cuánticos de dichos qubits incuye la posibilidad de condicionar la aplicación de la puerta lógica del qubit objetivo al estado del qubit control. Un ejemplo típico es la negación controlada, en la que el qubit objetivo se cambia de a y viceversa sí y solo sí el valor del qubit control es .

Las puertas lógicas cuánticas tienen ciertas diferencias comparadas con las que se usan en los circuitos digitales convencionales. En particular, todas las puertas lógicas cuánticas son reversibles, es decir, que es posible invertir su acción mediante otra puerta lógica. En la práctica, esto significa que el número de qubits de la entrada ha de coincidir con el de la salida. Cada puerta lógica cuántica se representa por una matriz unitaria.

La puerta de Hadamard en un circuito cuántico.

Un ejemplo más explícitamente cuántico es la puerta Hadamard, que acepta como entrada para dar como salida o acepta para dar . En la esfera de Bloch, se puede ver como una rotación de sobre los ejes x y z. La matriz de Hadamard se expresa como:

.

Vector de estado o matriz densidad

Un qubit, en general, se presenta como una superposición o combinación lineal de los estados básicos y :

donde las amplitudes de probabilidad α y β son en general números complejos, esto es, contienen información de fase. Como en cualquier medida en mecánica cuántica, los cuadrados de estos coeficientes determinan respectivamente la probabilidad de obtener en una medida los resultados y . Puesto que la probabilidad total tiene que ser la unidad, α y β se deben relacionar por la ecuación:

Esta ecuación simplemente asegura que en la medición se obtiene un estado o el otro. Debido a su naturaleza cuántica, cualquier medida del qubit altera inevitablemente su estado: se rompe la superposición y colapsa en aquel estado de base que ha resultado de la medida, y {} se transforma irreversiblemente en {}.

Alternativamente, el qubit también puede describirse por medio de una matriz densidad. Para un qubit en el estado el operador proyección correspondiente es:

En contraste con el vector de estado, la matriz de densidad está definida de forma unívoca. Mediante matrices densidad, es posible describir a qubits cuyo estado no es bien conocido, los llamados «estados mezcla». En general se puede escribir la matriz densidad de un qubit en la forma

(*)

donde es la Matriz unidad 2×2 y son las matrices de Pauli. La probabilidad de encontrar el estado en una medida viene dada por .

Esfera de Bloch

Coordenadas esféricas.


El espacio de estados del qubit se puede representar mediante un espacio vectorial complejo bidimensional. Esto no es práctico, así que comúnmente se aprovecha la biyección (y el homeomorfismo) entre la superficie de una esfera y el plano complejo si este se ha cerrado mediante el punto del infinito. Esta superficie se llama esfera de Bloch en honor del físico Felix Bloch. Cada estado del qubit corresponde a un punto de la superficie de una esfera de radio unidad. Esto esencialmente significa que un qubit tiene dos grados de libertad locales. Estos grados de libertad podrían ser la longitud y latitud, o como es más habitual, dos ángulos y en coordenadas esféricas, como se muestra en la figura.

Una forma de entender esto es la siguiente: dada una base ortonormal, cualquier estado puro de un sistema cuántico de dos niveles puede ser escrito como superposición de los vectores de base y , donde el coeficiente o peso de cada vector es un número complejo. Dado que solamente la fase relativa entre los coeficientes de los vectores tiene significado físico, se puede tomar el coeficiente de como real y no negativo. La mecánica cuántica también impone que la probabilidad total del sistema es la unidad, de forma que . Dada esta condición, podemos escribir en la siguiente representación:

con and .

Representación en la esfera de Bloch de los estados de un qubit basado en la polarización de un fotón.

Un caso intuitivo para el uso de la esfera de Bloch es el de la partícula de espín 1/2, en el que el punto sobre la esfera indica la dirección en la que el qubit es función propia de la proyección del espín, esto es, donde se va a obtener un valor determinado, no probabilístico, para Sz. Sin embargo, es aplicable a cualquier qubit. En la siguiente figura, a modo de ejemplo, se representan algunos estados de un qubit basado en la polarización de un fotón: |0> y |1> son equivalentes a la polarización vertical y horizontal, dos de las combinaciones lineales con el mismo peso de |0> y |1> son las polarizaciones diagonales, y las otras dos son las polarizaciones circulares.

También es posible interpretar los puntos del interior de la esfera de Bloch como qubits de los que no se tiene información completa, esto es, estados mezcla descritos cuánticamente por una matriz densidad. El punto central corresponde entonces a un qubit sobre el que no se tiene absolutamente ninguna información. La probabilidad de obtener uno u otro resultado, al medir en cualquier base posible, sería 1/2. Esta interpretación es útil a la hora de pensar en medidas en distintas bases, también en el caso de estados puros. La diferencia de probabilidades entre los dos resultados posibles en una base de medida será la proyección del punto correspondiente a ese estado cuántico en la línea que representa a esa base. De esta forma, los estados puros son aquellos para los que es posible encontrar una base que dé uno de los dos resultados posibles con probabilidad unidad. Sin embargo, si medimos un estado puro en una base ortogonal, la proyección es cero, lo que se corresponde con una probabilidad de obtener uno u otro resultado de 1/2. Cuanto mayor es la mezcla del estado cuántico, esto es, cuanto más nos alejamos de la superficie de la esfera hacia su centro, menor es la diferencia entre las probabilidades de los dos resultados posibles, aunque usemos la base más adecuada.

Sistema de varios qubits

El estado conjunto de un sistema formado por N qubits se describe como un punto en el espacio de Hilbert de dimensión 2N, el producto tensorial de los N espacios de Hilbert de cada qubit. Se puede representar el estado compuesto de forma compacta, por ejemplo:

donde la posición o el índice {1-4} indican el qubit y el valor {0,1} indican el estado de cada qubit. Todo producto directo entre estados de qubits da lugar a un estado conjunto de N qubits, por ejemplo:

En cambio, no se aplica lo contrario: existen estados conjuntos de N qubits que no se pueden describir como producto de los estados individuales de los N qubits, por ejemplo . Estos estados se conocen como entrelazados porque los estados de los dos qubits no son independientes. La descripción de un único qubit en un estado entrelazado solamente es posible mediante una matriz densidad, lo que muestra el grado parcial de la información sobre este qubit. En este caso, la información que falta está relacionada con el entrelazamiento. De hecho, si solamente se emplean las matrices densidad de cada uno de los qubits entrelazados no se está describiendo completamente el estado. Así, el entrelazamiento es una propiedad no local, que se expresa en las correlaciones cuánticas entre los qubits que están entrelazados.

Codificación de qubits

Un caso particular de un sistema de varios qubits es aquel en el que la información contenida en un solo qubit se codifica con redundancia empleando para ello la correlación cuántica entre varios qubits. Por ejemplo, con el código de Shor, un estado se transforma en un producto de 9 qubits , donde

A veces se habla de que se codifica un qubit lógico en varios qubits físicos (nueve, en el caso del código de Shor); también se puede hablar de qubits auxiliares o ancilla, aunque este es un término genérico que se usa también para otros tipos de algoritmos cuánticos. En ciertas condiciones, es posible aprovechar este tipo de redundancia para determinar y corregir estas correlaciones cuánticas entre los qubits físicos sin necesidad de medir el estado cuántico del qubit lógico. De esta forma, es posible corregir errores en un qubit sin medir su valor. Aquí hay una diferencia crucial con la corrección de errores en la informática clásica: medir el valor de un bit clásico es una operación habitual para corregir errores, mientras que al medir un qubit generalmente se perturba su valor.

Other Languages
български: Кюбит
català: Qubit
čeština: Qubit
Deutsch: Qubit
Ελληνικά: Qubit
English: Qubit
Esperanto: Kvantumbito
eesti: Kvantbitt
فارسی: کیوبیت
suomi: Kubitti
français: Qubit
Gaeilge: Canghiotán
עברית: קיוביט
magyar: Kvantumbit
italiano: Qubit
日本語: 量子ビット
ქართული: კუბიტი
한국어: 큐비트
Bahasa Melayu: Qubit
Nederlands: Qubit
norsk bokmål: Qubit
polski: Kubit
português: Bit quântico
русский: Кубит
slovenščina: Kubit
shqip: Kjubit
svenska: Kvantbit
Türkçe: Qubit
українська: Кубіт
Tiếng Việt: Qubit
中文: 量子位元