Proyección isométrica

Proyección isométrica.

Una proyección isométrica es un método gráfico de representación, más específicamente una axonométrica[3] Constituye una representación visual de un objeto tridimensional en dos dimensiones, en la que los tres ejes ortogonales principales, al proyectarse, forman ángulos de 120º, y las dimensiones paralelas a dichos ejes se miden en una misma escala.

El término isométrico proviene del idioma griego: "igual medida", ya que la escala de medición es la misma en los tres ejes principales (x, y, z).

La isometría es una de las formas de proyección utilizadas en dibujo técnico que tiene la ventaja de permitir la representación a escala, y la desventaja de no reflejar la disminución aparente de tamaño -proporcional a la distancia- que percibe el ojo humano.

Historia

Modelo de motor de molienda (1822), dibujado en una isométrica a 30°.[4]
Ejemplo de arte chino en una edición ilustrada del Romance de los Tres Reinos, China, ca. siglo XV.

Formalizado en primer lugar en 1822 por el profesor William Farish (1759-1837), el concepto de isometría había existido en una forma empírica más o menos aproximada desde siglos antes.[8]

Un ejemplo de las limitaciones de la proyección isométria: la diferencia de altura entre las bolas azul y roja no se puede determinar.
La escalera de Penrose representa una escalera que parece subir (sentido antihorario) o descender (en sentido horario) ya que forma un bucle continuo.

Como todos los tipos de proyección paralela, los objetos dibujados con proyección isométrica no aparecen mayores o menores a medida que se alejen o acerquen al espectador. Mientras es ventajosa para los dibujos arquitectónicos, en los que las mediciones deben ser tomadas directamente, el resultado es una distorsión de la percepción, ya que a diferencia de la proyección de perspectiva, no es cómo funciona normalmente la visión humana o la fotografía. También puede dar lugar fácilmente a situaciones en las que la profundidad y la altura son difíciles de medir, como se muestra en la imagen de la derecha. Esto puede parecer paradójico o crear formas imposibles, como las escalera de Penrose.


Other Languages