Propulsión espacial

Proyecto Bussard, uno de los sistemas de propulsión pensados para los viajes interestelares.

Se denomina a cualquier tecnología capaz de impulsar una nave por el espacio. Para efectuar viajes espaciales es necesario algún sistema de propulsión capaz de imprimir aceleración a los vehículos. Debido al vacío del espacio exterior, cualquier aceleración deberá basarse en la tercera ley Newton (o ley de acción y reacción), según la cual, «por cada fuerza que actúa sobre un cuerpo, este realiza una fuerza de igual intensidad pero de sentido contrario». De esta manera, si un objeto expulsa parte de su masa en una dirección, el resto del objeto se desplazará en sentido contrario. Este es el fundamento de los motores a reacción, también llamados de «propulsión a chorro»: en ellos, parte de la masa de la nave (el combustible) es expulsada a gran velocidad en una dirección, ocasionando que el resto de la nave se desplace en el sentido opuesto.

El motor más empleado para la propulsión de naves espaciales es el motor cohete, pues es capaz de generar una enorme potencia y, a diferencia de otros tipos de motores, no necesita de oxígeno atmosférico para funcionar. Sin embargo, a pesar de la gran potencia de los motores cohete no pueden funcionar en el vacío al no cumplir con la tercera ley de Newton las enormes distancias espaciales demandan motores, capaces de viajar por el espacio. Con este propósito se están desarrollando los motores iónicos, que gracias a la mayor velocidad de salida del propelente pueden ser diez veces más eficientes. Aun así, ningún motor conocido hasta el momento es capaz de obtener velocidades suficientes como para plantear viajes interestelares. No obstante, existen diversas alternativas a los motores a reacción: la más inmediata la constituyen las velas solares, capaces de obtener impulso de la radiación solar, del viento solar, incluso de rayos láser o de microondas enviados desde la Tierra. No se puede descartar tampoco que en un futuro lejano sean viables otros métodos de propulsión más exóticos, como los «motores de curvatura» o motores warp.

Necesidad de sistemas de propulsión

Los satélites artificiales deben ser lanzados para ser puestos en órbita. Y una vez que han alcanzado su posición estacionaria en la órbita nominal, necesitan alguna manera de control de actitud para que se puedan mantener apuntando una cierta posición entre la Tierra, el Sol y posiblemente algunos objetos astronómicos de interés. Los satélites no sufren por lo general una resistencia aerodinámica apreciable (si bien en las órbitas más bajas todavía persiste una enrarecida atmósfera remanente). Por este motivo pueden permanecer en órbita durante largos períodos con solo una pequeña cantidad de propelente, utilizado tanto para propulsarse como para realizar pequeñas correcciones. Muchos satélites necesitan ocasionalmente moverse de unas órbitas a otras y precisan por tanto de una cierta cantidad de propelente. Cuando este tipo de satélites han agotado su capacidad para hacer estas operaciones, se dice que su vida útil se ha agotado.

Durante la fase de lanzamiento todas las naves espaciales emplean cohetes de propelente químico, bien en estado líquido (propelente y oxidante separados), o bien sólido (propelente y oxidante mezclados). Aunque para órbitas bajas y cargas medianas y pequeñas existen algunos diseños recientes, tales como el cohete Pegaso o la nave SpaceShipOne), que durante la primera fase del lanzamiento, aprovechan la sustentación aerodinámica y el oxígeno presente en la atmósfera para la combustión, evitando así tener que cargar con él en el propio cohete, reduciendo los costes.

Las naves espaciales que realizan viajes interplanetarios han de recorrer largas distancias. Por esta razón, además del lanzamiento requerido para abandonar la atmósfera de la Tierra (como en el caso de los satélites) necesitan un segundo sistema de propulsión para viajar por el espacio o, al menos, para poder corregir su trayectoria. Las naves interplanetarias realizan estas correcciones mediante pequeñas propulsiones de corta duración, mientras que generalmente, su desplazamiento principal se basa únicamente en su impulso inicial y simplemente tienen un comportamiento de caída libre a través de su órbita.

Concepción artística del funcionamiento y disposición de una vela solar.

La manera más simple y eficiente para cambiar de una órbita a otra desde el punto de vista de consumo de propelente se denomina transferencia de Hohmann: la nave espacial empieza en una órbita circular alrededor del Sol, y durante un corto período efectúa un impulso en la dirección de movimiento de la nave, tangente a su trayectoria. De esta manera la nave acelera o desacelera, pasando a adoptar una órbita elíptica alrededor del Sol, que es tangente a la órbita previa. La nave espacial así propulsada cae libremente en esta órbita hasta que alcanza su destino. Cuando las naves se acercan a un planeta con atmósfera, se puede recurrir al aerofrenado que a veces se emplea para el ajuste final de la órbita.[1]

Otros métodos de propulsión, tales como las velas solares, proporcionan un impuso reducido pero constante:[2] una nave con un sistema de propulsión de estas características podría ser capaz de viajar largas distancias interplanetarias utilizando un propelente inagotable como la radiación solar. Estas naves seguirían una trayectoria diferente a la definida por la transferencia orbital de Hohmann, ya que pueden ser permanentemente empujadas radialmente desde el Sol hacia el exterior del sistema solar.

Las naves espaciales que pretendan realizar viajes interestelares necesitarán métodos de propulsión más eficientes, pues dada la magnitud de las distancias interestelares, se necesitará de una gran velocidad para recorrerlas en un intervalo de tiempo razonable hasta llegar al destino. Adquirir estas velocidades es un reto tecnológico hoy en día.

Other Languages