Producto tensorial

En matemáticas, el producto tensorial, denotado por , se puede aplicar en diversos contextos a vectores, matrices, tensores y espacios vectoriales. En cada caso, el significado del símbolo es el mismo: la operación bilineal más general.

Un caso representativo de producto tensorial es el producto de Kronecker de dos matrices cualesquiera, por ejemplo:

cuyo rango resultante es igual a 12, dimensión resultante es igual a 3x4.

En este ejemplo el rango denota el número de índices indispensables, mientras que la dimensión cuenta el número de grados de libertad en la matriz que resulta.

Producto tensorial de espacios vectoriales

El producto tensorial de dos espacios vectoriales V y W sobre un cuerpo K tienen una definición formal por el método de generadores y relaciones (se denota generalmente como V ⊗ W cuando el cuerpo subyacente K se sobreentiende). Para construirlo, se comienza con el conjunto de pares ordenados del producto cartesiano V × W. Para propósitos de esta construcción, considérese este producto como un conjunto en vez de un espacio vectorial. El espacio vectorial libre F sobre V × W se define tomando el espacio vectorial en el cual los elementos de V × W son una base. escrito en notación teorética de conjuntos,

donde se usa el símbolo e(v,w) para destacar que son tomados como linealmente independientes por definición para distintos  (vw) ∈ V × W.

El producto tensorial surge por la definición de las siguientes relaciones de equivalencia en F(V × W):

donde v, v1 y v2 son vectores de V, mientras que w, w1, y w2 son vectores de W, y c surge del cuerpo K. Denotando por R el espacio generado por esas cuatro relaciones de equivalencia, el producto tensorial de dos espacios vectoriales V y W es entonces el espacio cociente

Es llamado también espacio producto tensor de V y W y es un espacio vectorial (que puede ser verificado directamente mirando los axiomas de espacio vectorial). El producto tensorial de dos elementos v and w es la clase de equivalencia (e(v,w) + R) de e(v,w) en V ⊗ W. La clase de equivalencia de (v, w) se llama tensor y es denotada por . Por construcción, se puede demostrar solamente tantas identidades entre los tensores, y las sumas de tensores, como se siguen de las relaciones usadas.

Tómese el espacio vectorial generado por W x V y aplique (factorice los subespacios generados por) las relaciones multilineales detalladas arriba. Con esta notación, las cuatro relaciones de equivalencia toman la forma de igualdades en el espacio producto tensor:

Cada elemento del producto tensorial es una suma finita de tensores: más de un tensor se requiere generalmente para hacer eso. Se muestra simplemente cómo construir una base de los . Dadas bases para V y W, el conjunto de productos tensoriales de los vectores de base, uno de V y uno de W, forman una base para .

La dimensión del espacio por lo tanto está dada por el producto mn de las dimensiones de V y de W.

Caracterización por una propiedad universal

En álgebra abstracta, el álgebra lineal es elevada a álgebra multilineal introduciendo el producto tensorial de dos espacios vectoriales. Se hace para reducir el estudio de los operadores bilineales al de los operadores lineales. Esto es suficiente para hacer lo mismo con todas las funciones multilineales.

Formalmente, el producto tensorial de los dos espacios vectoriales V y W sobre el mismo cuerpo base F es definido por la siguiente propiedad universal:

Es un espacio vectorial T sobre F, junto con un operador bilineal: , tales que para cada operador bilineal existe un operador lineal L único: L: T → X con , i.e. para todo x en V e y en W.

El producto tensorial es único salvo isomorfismo, especificado unívocamente por este requisito, y podemos por lo tanto escribir en vez de T. Por la construcción directa, según lo sugerido en la sección anterior, se puede demostrar que existe el producto tensorial para dos espacios vectoriales cualesquiera. El espacio es generado por la imagen de la y aún más: si S es una base de V y T es una base de W, entonces los (tal que y ) son una base para .

Es posible generalizar la definición de producto tensorial de un número cualquiera de espacios. Por ejemplo, la propiedad universal de es que cada operador tri-lineal en corresponde a un operador lineal único en .

El producto tensorial de los tres se puede por lo tanto identificar con cualquiera de esos: el binario será suficiente. Los espacios tensoriales permiten que se utilice la teoría de operadores lineales para estudiar operadores multilineales, donde el caso bilineal es el principal.

El producto binario tensorial es asociativo: es naturalmente isomorfo a .

Other Languages