Proceso politrópico

Se denomina proceso politrópico al proceso termodinámico, generalmente ocurrido en gases, en el que existe, tanto una transferencia de energía al interior del sistema que contiene el o los gases como una transferencia de energía con el medio exterior ( proceso isotérmico).[1]

El proceso politrópico obedece a la relación:

Donde p es la presión, v es un volumen específico, n, el índice politrópico, que puede ser cualquier número real, y C es una constante. La ecuación de un proceso politrópico es particularmente útil para describir los procesos de expansión y compresión que incluyen transferencia de calor. Esta ecuación puede caracterizar un amplio rango de procesos termodinámicos desde n=0 a n= lo cual incluye: n=0 ( proceso isobárico), n=1 (proceso isotermal), n=γ ( proceso isentrópico), n= ( proceso isocórico) y todos los valores intermedios de n. Así la ecuación es politrópica en el sentido de que describe varias líneas o procesos. Además de la representación del comportamiento de gases, la ecuación puede ser utilizada para representar ciertos comportamientos de líquidos o sólidos. La única restricción es que el proceso debe desplegar una tasa de transferencia de energía de K=δQ/δW=constante durante tal proceso. Si se desvía de tal restricción, esto sugiere que el exponente no es una constante. Para un exponente específico, otros puntos a lo largo de la curva pueden ser calculados de la siguiente manera:

Derivación

Los procesos politrópicos se comportan de forma diferente con varios índices politrópicos. Un proceso politrópico puede generar otros procesos termodinámicos básicos.

La siguiente derivación es tomada del texto de Joseph Christians.[2] Considérese un gas en un sistema cerrado bajo un proceso interno reversible con cambios insignificantes de energía cinética y potencial. La primera ley de la termodinámica establece que:

Donde q es positiva por el calor añadido al sistema y w es negativa por el trabajo realizado dentro del mismo.

Al definir el índice de transferencia de energía se tiene:

.

Para un proceso interno reversible el único tipo de interacción de trabajo es el desplazamiento de trabajo de expansión dado por Pdv. Así también se asume que el gas es calóricamente perfecto (calor específico constante) de modo que du = cvdT. La primera ley también puede ser escrita:

Considérese la ecuación de estado del gas ideal con el bien conocido factor de compresibilidad Z: Pv = ZRT. Asumiendo que la constante del gas es también fija (por ejemplo, hay reacciones químicas). La ecuación de estado PV = ZRT puede ser diferenciada para dar:

Basado en la relación específica de calor que surge de la definición de entalpía, el término ZR puede ser reemplazado por cp - cv. Con estas anotaciones la primera ley de la termodinámica se convierte en:

Donde γ es el índice de calor específico. Esta ecuación es importante para el entendimiento de la base de la ecuación de los procesos politrópicos. Ahora considérese la ecuación de proceso politrópico:

Tomando el logaritmo natural de ambos lados de la ecuación (entendiendo que el exponente n es una constante para un proceso politrópico) se tiene:

La cual puede ser diferenciada y reordenada de la siguiente forma:

Al comparar este resultado del resultado obtenido por la primera ley, se concluye que el exponenete politrópico es constante (y por lo tanto el proceso es politrópico) cuando el índice de transferencia de energía es constante para el proceso. De hecho el exponente politrópico puede ser expresado en términos del índice de transferencia de energía:

.

Donde K es negativa para un gas ideal.

Esta derivación puede ser ampliada para incluir procesos politrópicos en sistemas abiertos incluyendo momentos en los que la energía cinética (ej. Número Mach) es significativo. También se puede ampliar para incluir procesos politropicos irreversibles.

Other Languages