Problema de Dirichlet

En matemáticas, el problema de Dirichlet es un problema que consiste en hallar una función que es la solución de una ecuación en derivadas parciales (EDP) en el interior de un dominio de (o más generalmente una variedad diferenciable) que tome valores prescritos sobre el contorno de dicho dominio.

El problema de Dirichlet puede resolverse para muchas EDPs, aunque originalmente fue planteada para la ecuación de Laplace. En este caso el problema puede enunciarse como sigue:

Dada una función con valores en todos los puntos del contorno de una región en . ¿Existe una única función continua dos veces continuamente diferenciable en el interior y continua en el contorno, tal que u es armónica en el interior y en el contorno?

Este requisito se denomina condición de contorno de Dirichlet. En este problema es fundamental probar la existencia de la solución; la unicidad viene dada utilizando el principio del máximo.

Historia

El problema de Dirichlet debe su nombre a Lejeune Dirichlet, quien propuso una solución para un método variacional el cual se conoce como principio de Dirichlet. La existencia de una solución única es muy plausible por el 'argumento físico': cualquier distribución de carga sobre el contorno, para las leyes de la electrostática, deberá determinar un potencial eléctrico como solución.

Sin embargo, Weierstrass encontró una falla al argumento de Dirichlet, y una demostración rigurosa de la existencia fue encontrada recién en 1900 por Hilbert. Resultó entonces que la existencia de una solución depende delicadamente de la suavidad del contorno y de los datos prescriptos.

Other Languages