Presentación de grupo

En álgebra abstracta, una presentación es una forma de definir un grupo mediante la especificación de dos conjuntos:

  • S, conjunto de los generadores, de modo que todo elemento del grupo pueda expresarse como producto de elementos de S.
  • R, conjunto de las relaciones, igualdades entre elementos del grupo.

La presentación de un grupo G suele escribirse en la forma . En las relaciones en que el segundo miembro de la igualdad sea el elemento neutro del grupo, suele omitirse la igualdad y el elemento neutro. Por ejemplo:

indica que el grupo G está generado por a, b, c, d ; y el conjunto de relaciones nos indica que b9= e, es decir, b es de orden 9, cb es de orden 3, y que c y b conmutan.

Introducción informal

Llamamos palabra a cualquier producto de elementos del grupo o de sus inversos. Por ejemplo, si x, y, z son elementos de un grupo G, entonces xy, z-1xzz son palabras en el conjunto {x, y, z}.

Diremos que un grupo G está generado por un conjunto S, si es posible describir todo elemento de G como producto de la forma

x1a1 x2a2 ... xnan

donde todos los xi son elementos de S, y cada ai es un número entero. Es decir, si todo elemento de G puede expresarse como una palabra en S.

Si G no es un grupo libre, muchos de estos productos serán iguales. Será necesario precisar todas estas relaciones a partir de un conjunto R de relaciones básicas de las que se deduzcan las demás,

Other Languages