Potencia de un punto

Potencia de un punto:
PA·PB=PC·PD=PE·PF.

En geometría elemental, la expresión potencia de un punto se refiere a un resultado que relaciona las longitudes de segmentos de rectas que pasan por dicho punto y cortan a una circunferencia fija.

De forma más precisa, si P es un punto en el plano y se fija una circunferencia con centro O, entonces para cualquier línea que pase por P y corte a la circunferencia en dos puntos A, B, se cumplirá que PA·PB es constante, independientemente de la posición de la línea. El valor de dicha constante se denomina la potencia del punto P.

El término potencia para referirse a este concepto geométrico fue introducida por Jakob Steiner en el artículo de 1826 titulado Einige geometrische Betrachtungen («Unas cuantas observaciones geométricas»),[1] aunque el teorema al que hace referencia se encuentra ya en Los Elementos de Euclides

Configuraciones posibles

El teorema sobre potencia de un punto puede expresarse de forma alternativa como sigue:

(Potencia de un punto) Si dos rectas que pasan por un punto P, cortan a una circunferencia fija en los puntos A, B y C, D respectivamente, entonces PA·PB = PC·PD.

En otras palabras, cualquier otra línea que pase por P y corte a la circunferencia determinará dos segmentos cuyo producto es el mismo valor.

La demostración de este resultado procede por casos, dependiendo de si el punto P se encuentra en el interior, o en el exterior de la circunferencia.

El punto es interior a la circunferencia

Caso 1: El punto de corte es interior a la circunferencia.

Tomando dos cuerdas arbitrarias AB y CD de la circunferencia que se cortan en el punto P, se consideran los triángulos y los cuales serán semejantes, pues :

  • El teorema del ángulo inscrito establece que , siendo ambos iguales a la mitad del arco BC.
  • Los ángulos y son iguales por ser opuestos por el vértice.

De dicha semejanza se deduce que

y por tanto

.

Este resultado se encuentra ya en la obra Los Elementos, de Euclides, donde aparece como la proposición 35 del libro III:

Si en una circunferencia se cortan dos rectas entre sí, el rectángulo comprendido por los segmentos de una es igual al rectángulo comprendido por los segmentos de la otra

Euclides. Los Elementos, III.35.

Debe aclararse que en la concepción matemática griega los números eran representados siempre por cantidades geométricas y por tanto no tenía sentido una multiplicación «numérica» de longitudes de segmentos. Por ello, para decir que dos productos tienen el mismo valor expresa que los rectángulos formados por dichos segmentos son iguales (esto es, sus áreas).

El punto es exterior a la circunferencia

Caso 2: El punto de corte es exterior a la circunferencia.

En este caso AB y CD son dos secantes que se intersecan en un punto P exterior a la circunferencia. Al igual que en el caso anterior es posible demostrar que los triángulos y son semejantes pues:

  • El cuadrilátero ABDC es cíclico y por tanto . Por otro lado y por tanto .
  • Los ángulos y son el mismo ángulo y por tanto iguales entre sí.

De la semejanza se deduce nuevamente que

y por tanto

.

Una secante y una tangente

Caso 3: El punto de corte es exterior a la circunferencia y una de las rectas es tangente.

Un caso de especial consideración es el formado por una recta tangente y una secante, como en la figura. En esta situación, el ángulo es semi-inscrito y mide la mitad del arco BT, al igual que el ángulo inscrito .

La igualdad de ángulos nuevamente implica una semejanza de triángulos, en esta ocasión y . Dicha semejanza implica

y por tanto

.

Una recta tangente puede considerarse como un caso límite de secantes.

Este caso en realidad puede considerarse como un caso límite del correspondiente a dos secantes, obtenido cuando los puntos C, D se desplazan sobre la circunferencia hasta coincidir. En este sentido, el punto de tangencia es en realidad un punto de corte «doble» y el producto PC·PD se convierte en PT·PT=PT².

Other Languages