Politopo

Un segmento (1 dimensión) puede generar un polígono (2 dimensiones). Mediante nuevas transformaciones podemos obtener un poliedro (3 dimensiones), un polícoro (4 dimensiones) o diversos politopos (n dimensiones).

En geometría politopo significa, en primer lugar, la generalización a cualquier dimensión de un polígono bidimensional, o un poliedro tridimensional. Además, este término es utilizado en varios conceptos matemáticos relacionados. Su uso es análogo al de cuadrado, que puede usarse para referirse a una región del plano de forma cuadrada, o sólo para sus límites, o aún para una mera lista de sus vértices y lados junto con alguna información acerca de la forma en que están conectados.

El término fue creado por Alicia Boole Stott, hija del matemático y filósofo irlandés George Boole.

Los sólidos platónicos, o politopos regulares de tres dimensiones, fueron objeto central de estudio de los matemáticos de la Grecia Antigua (principalmente, en los Elementos de Euclides), probablemente debido a sus cualidades estéticas intrínsecas. En tiempos modernos, los politopos y sus conceptos relacionados tienen importante aplicación en gráficos por computadora, optimización y muchos otros campos.

Politopos convexos

Una clase especial de politopos son los politopos convexos, el casco convexo o envoltura convexa de un conjunto finito de puntos. Los politopos convexos también pueden representarse como la intersección de hemiespacios. Esta intersección puede escribirse como la desigualdad matricial , donde A es una matriz de n por m, con n el número de hemiespacios y m el número de dimensiones del politopo, y b un vector de n por 1 columna. Los coeficientes de cada fila de A y b se corresponden con los coeficientes de la desigualdad lineal que define al respectivo hemiespacio (véase hiperplano para una explicación más detallada). En consecuencia, cada fila de la matriz se corresponde con uno de los hiperplanos que delimitan el politopo.

Un politopo convexo n-dimensional está delimitado por un número de facetas (n-1)-dimensionales. Cada par de facetas se encuentra en una "cresta" de dimensión n-2. Estas, a su vez, se encuentra en fronteras (n-3)-dimensionales, y así sucesivamente. Estos subpolitopos son llamados caras, si bien el término puede también referirse específicamente al caso bidimiensional). Una cara de dimensión 0 es un vértice; una cara de dimensión 1 es una arista. Se llama celda a las caras tridimensionales.

Una cuveta consiste de los puntos de un politopo que también satisface la forma de igualdad de una representación matricial donde sólo está presente una fila en A. De modo similar, una cresta satisface la forma de igualdad de la representación matricial cuando en A hay dos filas presentes. En términos generales, una cara (n-j)-dimensional satisface la relación de igualdad con j filas en A. Estas filas forman la base de la cara. En términos geométricos, esto significa que la cara es el conjunto de puntos del politopo que yacen en la la intersección de j de los hiperplanos que limitan el politopo. Las caras de un politopo convexo forman una retícula llamada su retícula de cara, donde la relación de subconjuntos está definida entre los hiperplanos de la base. El politopo en sí es considerado una "cara" en la retícula de caras, y es el máximo de la retícula.

Nótese que esta terminología no es aún totalmente estándar. El término cara es a veces usado para referirse sólo a subpolitopos bidimensionales, y otras veces se lo usa en lugar de faceta. Se suele emplear también arista para referirse a una cresta.

Other Languages
العربية: متعدد مقام
català: Polítop
English: Polytope
Esperanto: Hiperpluredro
euskara: Politopo
فارسی: چندبر
français: Polytope
Gaeilge: Polatóp
magyar: Politóp
italiano: Politopo
日本語: ポリトープ
한국어: 다포체
lietuvių: Politopas
norsk bokmål: Polytop
português: Polítopo
русский: Политоп
Simple English: Polytope
slovenščina: Politop
svenska: Polytop
українська: Політоп
中文: 多胞形