Penicilina

Penicilina
Penicillin-G.svg
Benzylpenicillin-3D-balls.png
Nombre ( IUPAC) sistemático
Ácido 4-Tia-1-azabiciclo(3.2.0)heptano-2-carboxílico, 3,3-dimetil-7-oxo-6-((fenilacetil)amino)- (2S-(2alfa,5alfa,6beta))
Identificadores
Número CAS 61-33-6
Código ATC J01CE01
PubChem 5904
DrugBank DB01053
ChEBI 18208
Datos químicos
Fórmula C16 H18 N2 O4 S 
Peso mol. 334,4 - 356,34 g/ mol
Datos físicos
Densidad 1,41 g/cm³
P. de ebullición 97 °C (207 °F)
Solubilidad en agua 0,285 mg/mL (20 °C)
Farmacocinética
Biodisponibilidad 60-75 % (humanos);
30 % (animales)
Unión proteica 50-80 %, principalmente albúmina
Vida media 30 minutos-3 horas
Excreción Renal
Datos clínicos
Cat. embarazo B ( EUA)
Estado legal ?
Vías de adm. Intramuscular y oral
Wikipedia no es un consultorio médico  Aviso médico
[ editar datos en Wikidata]

Las penicilinas son antibióticos del grupo de los betalactámicos empleados profusamente en el tratamiento de infecciones provocadas por bacterias sensibles. La mayoría de las penicilinas son derivados del ácido 6-aminopenicilánico, difiriendo entre sí según la sustitución en la cadena lateral de su grupo amino. La penicilina G o bencipenicilina fue el primer antibiótico empleado ampliamente en medicina; su descubrimiento ha sido atribuido a Alexander Fleming en 1928, que obtuvo el Premio Nobel en Fisiología o Medicina en 1945 junto con los científicos Ernst Boris Chain y Howard Walter Florey, creadores de un método para producir el fármaco en masa.

No se conoce por completo el mecanismo de acción de las penicilinas, si bien su analogía a la D-alanil-D-alanina terminal, situada en la cadena lateral peptídica de la subunidad del peptidoglicano, sugiere que su carácter bactericida deriva de su intervención como inhibidor del proceso de transpeptidación durante la síntesis de aquel. De este modo, la penicilina actúa debilitando la pared bacteriana y favoreciendo la lisis osmótica de la bacteria durante el proceso de multiplicación.[1]

Existe una gran diversidad de penicilinas. Algunas especies de hongos del género Penicillium sintetizan de forma natural penicilinas, como el primer tipo aislado, la penicilina G. No obstante, debido a la aparición de resistencias, se han desarrollado otras familias siguiendo básicamente dos estrategias: la adición de precursores para la cadena lateral en el medio de cultivo del hongo productor, lo que se traduce en la producción de penicilinas biosintéticas; y la modificación química de la penicilina obtenida por la fermentación biotecnológica, lo que da lugar a las penicilinas semisintéticas.[2]

Las penicilinas difieren entre sí según su espectro de acción. Por ejemplo, la bencilpenicilina es eficaz contra bacterias Gram positivas como estreptococos y estafilococos, y Gram negativas, como gonococos y meningococos, pero debe administrarse por vía parenteral debido a su sensibilidad al pH ácido del estómago. La fenoximetil penicilina es, en cambio, resistente a este pH y puede administrarse por vía oral. La ampicilina, además de mantener esta resistencia, es eficaz contra otras bacterias Gram negativas como Haemophilus, Salmonella y Shigella.[1]

Si bien las penicilinas son los antibióticos menos tóxicos, pueden causar alergias, en ocasiones severas. Sin embargo, solo el 1 % de los pacientes que reciben tratamientos con betalactámicos las desarrollan.[3] Puesto que un shock anafiláctico puede conducir a la muerte del paciente, es necesario interrogarlo antes de iniciar el tratamiento.

Además de sus propiedades antibacterianas, la penicilina es un efectivo antídoto contra los efectos del envenenamiento por α-amanitina, uno de los aminoácidos tóxicos de los hongos del género Amanita.[4]

Historia de las penicilinas

Aunque generalmente se atribuye a Alexander Fleming el descubrimiento de la penicilina, muchas épocas y culturas diferentes llegaron mediante la observación y la experiencia a conocer y emplear las propiedades bactericidas de los mohos. Se han descubierto precedentes en la Grecia e India antiguas, y en los ejércitos de Ceilán del siglo II. Ha estado también presente en las culturas tradicionales de regiones tan distintas y distantes como Serbia, Rusia o China, así como en los nativos de Norteamérica.[N 1]

Hospital St. Mary de Londres, en cuya famosa ala Clarence estaba situada el departamento de inoculación de Almroth Wright y Alexander Fleming donde tuvo lugar el descubrimiento de la penicilina.[8]

A finales del siglo XIX, Henle (uno de los grandes científicos de la llamada "generación intermedia") suscita en su discípulo Robert Koch, en la Universidad de Gotinga, el interés por los trabajos de Agostino Bassi y Casimir Davaine, que le llevaría a investigar a los microorganismos como agentes causales de las enfermedades. Esto le conduciría en 1876 a descubrir que Bacillus anthracis era el agente causal específico del carbunco, en la línea de la teoría microbiana de la enfermedad, y a enunciar sus célebres postulados.[11]

Al mismo tiempo o poco después, conocido el hecho de que las bacterias podían provocar enfermedades, se sucedieron multitud de observaciones, tanto in vivo como in vitro, de que los mohos ejercían una acción bactericida. Por solo citar algunos nombres, sirvan de ejemplo los trabajos de John Scott Burdon-Sanderson, Joseph Lister, William Roberts, John Tyndall, Louis Pasteur y Jules Francois Joubert, Carl Garré, Vincenzo Tiberio, Ernest Duchesne, Andre Gratia y Sara Dath.

En marzo de 2000, médicos del Hospital San Juan de Dios de San José ( Costa Rica) publicaron los escritos del científico y médico costarricense Clodomiro Clorito Picado Twight ( 1887- 1944). En el reporte explican las experiencias que adquirió Picado entre 1915 y 1927 acerca de la acción inhibitoria de los hongos del género Penicillium sobre el crecimiento de estafilococos y estreptococos (bacterias causantes de una serie de infecciones humanas).[14]

Alexander Fleming

Fotografía de Alexander Fleming, descubridor de la penicilina, en su laboratorio.

El descubrimiento de la penicilina ha sido presentado como un ejemplo «icónico» de cómo procede el método científico a través de la observación, y de la habilidad singular de Alexander Fleming interpretando un fenómeno casual.[20]

  • Conocía a casi todos los autores mencionados en el apartado anterior. Su gran número es ya por sí solo indicador de que existía toda una corriente que investigaba en el campo con mutuo conocimiento de trabajos. El propio Fleming lo admite en su conferencia de Nobel.[16]
  • Buscaba activamente una sustancia bactericida: impresionado por los campos de guerra europeos en la Primera Guerra Mundial y las bajas por infección en las heridas, ensayó con salvarsán, descubrió la lisozima constatando que no afectaba a ninguno de los organismos problemáticos de la penicilina, y ello aun en contra de la línea marcada por su jefe, Almroth Wright, más interesado en la inmunización. Compara en su primer trabajo el espectro de acción de la penicilina y la lisozima.

El descubrimiento de la penicilina según Fleming ocurrió en la mañana del viernes 28 de septiembre de 1928, cuando estaba estudiando cultivos bacterianos de Staphylococcus aureus en el sótano del laboratorio del Hospital St. Mary en Londres, situado en el Ala Clarence, ahora parte del Imperial College.[23]

Primeras aplicaciones en medicina y aislamiento

Aspecto al microscopio óptico de las hifas y conidióforos de Penicillium, hongo del cual se aisló la penicilina.

Debido a su carácter tímido, Fleming no conseguía transmitir entusiasmo sobre su descubrimiento, aunque continuó durante mucho tiempo trabajando en él, hasta 1934 en que lo abandonó para dedicarse a las sulfamidas.[24] Aunque estos resultados no fueron publicados, influyeron en Howard Walter Florey, que fue compañero de Paine en la Universidad de Sheffield.

Entre 1928 y 1938 Florey se interesó en primer lugar por la lisozima, y posteriormente por el segundo descubrimiento de Fleming. A diferencia de este último, que casi no contaba con plantilla, formó un gran equipo con personalidades de la talla de Chain, Leslie Falk, Norman Heatley y hasta otros 22 colaboradores entre investigadores y técnicos con gran cantidad de medios en la escuela de patología Sir William Dunn de Oxford, aunque curiosamente, según Florey, no por su potencial farmacéutico, sino por un puro interés científico. Su capacidad de procesado superaba los 500 litros de cultivo semanales.[20]

La purificación de la penicilina se produjo en 1939, a cargo del bioquímico Heatley, utilizando grandes volúmenes de filtrado mediante un sistema a contracorriente y extracción por amil acetato. Edward Abraham terminó de eliminar el resto de impurezas por cromatografía en columna de alúmina. Posteriormente se probó la sustancia en ratones infectados con Streptococcus. El primer ser humano tratado con penicilina purificada fue el agente de policía Albert Alexander en el Hospital John Radcliffe, el 12 de febrero de 1941. El paciente falleció porque no se le pudo administrar suficiente fármaco.[25]

Las primeras compañías en interesarse por la patente fueron Glaxo y Kemball Bishop.

Desarrollo de la producción industrial y otras penicilinas

Galpón de fermentación, similar a los calderos donde se preparó por primera vez la producción masiva de penicilina sumergida, en Illinois, Estados Unidos.

A partir de las investigaciones de Florey en 1939 y de Heatley en 1941, la producción industrial de la penicilina en Europa se vio en apuros económicos debido al comienzo de la Segunda Guerra Mundial. Los científicos británicos buscaron ayuda en los Estados Unidos, específicamente en los laboratorios de Peoria, Illinois donde sus científicos estaban trabajando en métodos de fermentación para acelerar el crecimiento de cultivos de hongos.[28]

El 26 de noviembre de 1941, Heatley y Andrew J. Moyer, el experto del laboratorio en Peoria, lograron mejorar 10 veces la producción de penicilina. Con el aumento de la cantidad de penicilina también bajó el costo de una dosis. Desde el precio incalculable en 1940, el precio de la penicilina bajó a US$20 por dosis en julio de 1943 y más aún a $0,55 por dosis en 1946. Como consecuencia, los laboratorios en Gran Bretaña en 1999 y en Peoria en 2001 fueron designados como Monumento Químico Histórico Internacional (International Historic Chemical Landmark).[30]

Penicilinas sintéticas

Una de las varias presentaciones de la penicilina producida de modo natural es la bencilpenicilina o penicilina G, la única que se usa clínicamente. A ella se asociaron la procaína y la benzatina para prolongar su presencia en el organismo, obteniéndose las respectivas suspensiones de penicilina G + procaína y penicilina G benzatina, que solo se pueden administrar por vía intramuscular.

Más tarde, se modificó la molécula de penicilina G para elaborar penicilinas sintéticas, como la penicilina V, que se pueden administrar por vía oral al resistir la hidrólisis ácida del estómago. Sin embargo, el relativamente estrecho espectro de acción de la actividad de la penicilina V hizo que se sintetizaran derivados con acción sobre una más amplia gama de agentes infecciosos. El primer paso fue el desarrollo de la ampicilina, efectiva frente a patógenos Gram positivos y Gram negativos, que además resultó considerablemente económica de adquirir. Otro avance fue el desarrollo de la flucloxacilina, usada contra bacterias productoras de β-lactamasa como los Staphylococcus. Actualmente existen múltiples derivados sintéticos de la penicilina, como la cloxacilina y la amoxicilina, que se administran por vía oral y de las que existe un abuso de consumo por la sociedad en general para autotratamiento de infecciones leves víricas que no precisan terapia antibiótica. Esta situación ha provocado un alto porcentaje de resistencia bacteriana frente a las penicilinas y ha llevado a la ineficacia de los betalactámicos en algunas infecciones graves.

Las penicilinas han sido ampliamente utilizadas en el campo de la veterinaria desde 1950, en que comenzaron a añadirse como aditivos en el pienso, debido a su efectividad reduciendo la mortalidad y la morbilidad frente a infecciones clínicas, así como el incremento de la tasa de engorde.[33]

Other Languages
Afrikaans: Penisillien
Alemannisch: Penicilline
aragonés: Penicilina
العربية: بنسلين
অসমীয়া: পেনিচিলিন
asturianu: Penicilina
azərbaycanca: Penisillin
беларуская: Пеніцылін
беларуская (тарашкевіца)‎: Пэніцылін
български: Пеницилин
brezhoneg: Penisilin
bosanski: Penicilin
català: Penicil·lina
کوردیی ناوەندی: پێنیسیلین
čeština: Penicilin
Cymraeg: Penisilin
dansk: Penicillin
Deutsch: Penicilline
Ελληνικά: Πενικιλίνη
English: Penicillin
Esperanto: Penicilino
euskara: Penizilina
føroyskt: Penicillin
français: Pénicilline
Gaeilge: Peinicillin
galego: Penicilina
客家語/Hak-kâ-ngî: Chhiâng-môi-su
עברית: פניצילין
हिन्दी: पेनिसिलिन
hrvatski: Penicilin
Kreyòl ayisyen: Penisilin
magyar: Penicillin
Հայերեն: Պենիցիլիններ
Bahasa Indonesia: Penisilin
Ilokano: Penisilina
íslenska: Pensilín
italiano: Penicillina
日本語: ペニシリン
Basa Jawa: Penisilin
ქართული: პენიცილინი
қазақша: Пенициллин
한국어: 페니실린
Latina: Penicillinum
Limburgs: Penicillien
lingála: Penisilíni
لۊری شومالی: پینی سیلین
lietuvių: Penicilinas
latviešu: Penicilīni
മലയാളം: പെനിസിലിൻ
монгол: Пенициллин
Bahasa Melayu: Penisilin
မြန်မာဘာသာ: ပင်နီဆီလင်
Nederlands: Penicilline
norsk nynorsk: Penicillin
norsk bokmål: Penicillin
occitan: Penicillina
polski: Penicyliny
پنجابی: پنسلین
پښتو: پنسلين
português: Penicilina
română: Penicilină
русский: Пенициллины
Scots: Penicillin
srpskohrvatski / српскохрватски: Penicilin
Simple English: Penicillin
slovenčina: Penicilín
slovenščina: Penicilini
Soomaaliga: Benseliin
shqip: Penicilina
српски / srpski: Пеницилин
Basa Sunda: Pénisilin
svenska: Penicillin
Kiswahili: Penicillin
తెలుగు: పెన్సిలిన్
Türkçe: Penisilin
татарча/tatarça: Пенициллин
українська: Пеніцилін
اردو: پنسلین
oʻzbekcha/ўзбекча: Penitsillin
Tiếng Việt: Penicillin
Winaray: Penicillin
吴语: 青霉素
ייִדיש: פעניצילין
Vahcuengh: Cinghmoizsoq
中文: 青霉素
粵語: 盤尼西林