Partícula en una caja

Función de onda para una partícula encerrada una caja bidimensional, las líneas de nivel sobre el plano inferior están relacionadas con la probabilidad de presencia.

En física, la partícula en una caja (también conocida como pozo de potencial infinito) es un problema muy simple que consiste de una sola partícula que rebota dentro de una caja inmóvil de la cual no puede escapar, y donde no pierde energía al colisionar contra sus paredes. En mecánica clásica, la solución al problema es trivial: la partícula se mueve en una línea recta a una velocidad constante hasta que rebota en una de las paredes. Al rebotar, la velocidad cambia de sentido cambiando de signo la componente paralela a la dirección perpendicular a la pared y manteniéndose la velocidad paralela a la pared, sin embargo, no hay cambio en el módulo de la misma velocidad.

Descripción cuántica del problema

El problema se vuelve muy interesante cuando se intenta resolver dentro de la mecánica cuántica, ya que es necesario introducir muchos de los conceptos importantes de esta disciplina para encontrar una solución. Sin embargo, aun así es un problema simple con una solución definida. Este artículo se concentra en la solución dentro de la mecánica cuántica.

El problema puede plantearse en cualquier número de dimensiones, pero el más simple es el problema unidimensional, mientras que el más útil es el que se centra en una caja tridimensional. En una dimensión, se representa por una partícula que existe en un segmento de una línea, siendo las paredes los puntos finales del segmento.

En términos de la física, la partícula en una caja se define como una partícula puntual, encerrada en una caja donde no experimenta ningún tipo de fuerza (es decir, su energía potencial es constante, aunque sin pérdida de generalidad podemos considerar que vale cero). En las paredes de la caja, el potencial aumenta hasta un valor infinito, haciéndola impenetrable. Usando esta descripción en terminos de potenciales nos permite usar la ecuación de Schrödinger para determinar una solución.

Esquema del potencial para la caja unidimensional.

Como se menciona más arriba, si estuviéramos estudiando el problema bajo las reglas de la mecánica clásica, deberíamos aplicar las leyes del movimiento de Newton a las condiciones iniciales, y el resultado sería razonable e intuitivo. En mecánica cuántica, cuando se aplica la ecuación de Schrödinger, los resultados no son intuitivos. En primer lugar, la partícula sólo puede tener ciertos niveles de energía específicos, y el nivel cero no es uno de ellos. En segundo lugar, las probabilidades de detectar la partícula dentro de la caja en cada nivel específico de energía no son uniformes - existen varias posiciones dentro de la caja donde la partícula puede ser encontrada, pero también hay posiciones donde es imposible hacerlo. Ambos resultados difieren de la manera usual en la que percibimos al mundo, incluso si están fundamentados por principios extensivamente verificados a través de experimentos.

Other Languages