Partícula en un anillo

La partícula en un anillo es un ejemplo sencillo de sistema cuántico con propiedades interesantes. Este modelo reproduce las características hipotéticas de una partícula libre que se mueve solamente a lo largo de un anillo (espacio topológico homeomorfo a S1) y de manera uniforme. Además el modelo aquí presentado ha encontrado aplicación en explicar la regla de Hückel sobre la estabilidad de los hidrocarburos aromáticos.

Descripción cuántica del sistema

Suponemos una partícula que se mueve libremente a lo largo de un anillo. La relación entre la coordenada de posición angular sobre el anillo y las coordenadas cartesianas es:

donde . Los operadores de momento lineal vienen dados por:

Utilizando la forma funcional de la energía (clásica) en términos del momento lineal:

podemos obtener la expresión del operador hamiltoniano:

Operador hamiltoniano

Para obtener las funciones de onda, , de los estados estacionarios del sistema, tenemos que resolver la ecuación de Schrödinger independiente del tiempo:

donde E es el valor de la energía del estado, que por ser estacionario estará perfectamente bien definida. Para ello es conveniente transformar la expresión del hamiltoniano de coordenadas cartesianas, a coordenadas polares, :

Para el caso de una partícula en un anillo R es una constante y, por tanto, para obtener las funciones propias del Hamiltoniano,

tenemos que resolver la ecuación de Schrödinger independiente del tiempo expresada en términos de la variable :

( 1)

donde representa el momento de inercia de la partícula.

Soluciones de la ecuación de Schrödinger

Los posibles estados estacionarios del sistema son las soluciones de la ecuación anterior, ecuación (1). Por otro lado, cualquier estado no estacionario será combinación de estados estacionarios de diferente energía. Como candidatos canónicos para representar los estados estacionarios hay que escoger funciones propias del hamiltoniano que, por tanto, deben ser solución de la ecuación (1). En un sistema cuántico, pueden existir varios estados estacionarios con un mismo valor de la energía, tal y como ocurre en el caso de la partícula en un anillo. Cuando esto sucede se dice que dicho nivel de energía presenta degeneración (un término poco explicativo que se introdujo por motivos históricos relacionados con el átomo de hidrógeno, pero que ha sido mantenido a pesar de ser poco explicativo).

Puede verificarse fácilmente que las funciones trigonométricas, seno y coseno, son soluciones de la ecuación de Schrödinger, ecuación (1). Análogamente las exponenciales son soluciones de la ecuación (1). Con el fin de que además sean funciones propias del operador momento angular elegiremos estas últimas:

Substituyendo esas funciones candidatas en la ecuación (1), se obtiene el valor necesario de k para que cualquiera de las dos sea solución:

Por lo tanto, las funciones propias son:

( 2)

Como vemos, las soluciones son realmente exponenciales complejas. La solución general correspondiente a la función (o vector) de estado se obtiene, por tanto, como una combinación lineal de ambas funciones:

Other Languages